Skip to main content

Advertisement

Log in

Thermal metamorphism of the Arunachal Himalaya, India: Raman thermometry and thermochronological constraints on the tectono-thermal evolution

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Determination of the peak thermal condition is vital in order to understand tectono-thermal evolution of the Himalayan belt. The Lesser Himalayan Sequence (LHS) in the Western Arunachal Pradesh, being rich in carbonaceous material (CM), facilitates the determination of peak metamorphic temperature based on Raman spectroscopy of carbonaceous material (RSCM). In this study, we have used RSCM method of Beyssac et al. (J Metamorph Geol 20:859–871, 2002a) and Rahl et al. (Earth Planet Sci Lett 240:339–354, 2005) to estimate the thermal history of LHS and Siwalik foreland from the western Arunachal Pradesh. The study indicates that the temperature of 700–800 °C in the Greater Himalayan Sequence (GHS) decreases to 650–700 °C in the main central thrust zone (MCTZ) and decreases further to <200 °C in the Mio-Pliocene sequence of Siwaliks. The work demonstrates greater reliability of Rahl et al.’s (Earth Planet Sci Lett 240:339–354, 2005) RSCM method for temperatures >600 and <340 °C. We show that the higher and lower zones of Bomdila Gneiss (BG) experienced temperature of ~600 °C and exhumed at different stages along the Bomdila Thrust (BT) and Upper Main Boundary Thrust (U.MBT). Pyrolysis analysis of the CM together with the Fission Track ages from upper Siwaliks corroborates the RSCM thermometry estimate of ~240 °C. The results indicate that the Permian sequence north of Lower MBT was deposited at greater depths (>12 km) than the upper Siwalik sediments to its south at depths <8 km before they were exhumed. The 40Ar/39Ar ages suggest that the upper zones of Se La evolved ~13–15 Ma. The middle zone exhumed at ~11 Ma and lower zone close to ~8 Ma indicating erosional unroofing of the MCT sheet. The footwall of MCTZ cooled between 6 and 8 Ma. Analyses of PT path imply that LHS between MCT and U.MBT zone falls within the kyanite stability field with near isobaric condition. At higher structural level, the temperatures increase gradually with PT conditions in the sillimanite stability field. The near isothermal (700–800 °C) condition in the GHS, isobaric condition in the MCTZ together with Tt path evidence of GHS that experienced relatively longer duration of near peak temperatures and rapid cooling towards MCTZ, compares the evolution of GHS and inverted metamorphic gradient closely to channel flow predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acharyya SK (1998) Thrust tectonics and evolution of domes and the syntaxis in Eastern Himalaya, India. J Geol Soc Nepal 18:1–17

    Google Scholar 

  • Acharyya SK, Ghosh SC, Ghosh RN, Shah SC (1975) The continental Gondwana Group and associated marine sequence of Arunachal Pradesh (NEFA), Eastern Himalaya. Himal Geol 5:60–82

    Google Scholar 

  • Adlakha V, Lang KA, Patel RC, Lal N, Hutington KW (2013) Rapid long term erosion in the rain shadow of the Shillong Plateau, Eastern Himalaya. Tectonophysics 582:76–83

    Article  Google Scholar 

  • Aikman A, Harrison TM, Ding L (2008) Evidence for Early (>44 Ma) Himalayan Crustal Thickening, Tethyan Himalaya, southeastern Tibet. Earth Planet Sci Lett 274:14–23

    Article  Google Scholar 

  • Aoya M, Kouketsu Y, Endo S, Shimizu H, Mizukami T, Nakamura D, Wallis S (2010) Extending the applicability of the Raman carbonaceous material geothermometer using data from contact metamorphic rocks. J Metamorph Petrol 28:895–914

    Article  Google Scholar 

  • Arita K (1983) Origin of the inverted metamorphism of the lower Himalayas, Central Nepal. Tectonophysics 95:43–60

    Article  Google Scholar 

  • Baxter EF (2003) Natural constraints on metamorphic reaction rates. In Vance D, Mueller W, Villa IM (eds) Geochronology; linking the Isotopic record with petrology and textures. Geol Soc Lond Spec Publ 220:183–202

  • Beaumont C, Jamieson RA, Nguyen MH, Lee B (2001) Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414:738–742

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen MH, Medvedev S (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J Geophys Res 109(29):B06406. doi:10.1029/2003JB002809

    Article  Google Scholar 

  • Beny-Bassez C, Rouzaud JN (1985) Characterization of carbonaceous materials by correlated electron and optical microscopy and Raman microspectroscopy. Scan Electron Microsc 1:119–132

    Google Scholar 

  • Beyssac O, Goffé B, Chopin C, Rouzaud JN (2002a) Raman spectra of carbonaceous material in metasediments; a new geothermometer. J Metamorphic Geol 20:859–871

    Article  Google Scholar 

  • Beyssac O, Rouzaud JN, Goffé B, Brunet F, Chopin C (2002b) Characterization of high-pressure, low-temperature graphitization: a Raman microspectroscopy and HRTEM study. Contrib Mineral Petrol 143(1):19–31

    Article  Google Scholar 

  • Beyssac O, Brunet F, Petitet JP, Goffé B, Rouzaud JN (2003a) Experimental study of the microtextural and structural transformations of carbonaceous materials under pressure and temperature. Eur J Mineral 15:937–951

    Article  Google Scholar 

  • Beyssac B, Goffé O, Petitet JP, Froigneux E, Moreau M, Rouzaud JN (2003b) On the characterization of disordered and heterogeneous carbonaceous materials using Raman spectroscopy. Spectrochim Acta A 59:2267–2276

    Article  Google Scholar 

  • Beyssac O, Bollinger L, Avouac J-P, Goffe’ B (2004) Thermal metamorphism in the lesser Himalaya of Nepal determined from Raman spectroscopy of carbonaceous material. Earth Planet Sci Lett 225:233–241

    Article  Google Scholar 

  • Bhattacharjee S, Nandy S (2008) Geology of the western Arunachal Himalaya in parts of Tawang and West Kameng districts, Arunachal Pradesh. J Geol Soc India 72:199–207

    Google Scholar 

  • Bollinger L, Avouac JP, Byessac O, Catlos EJ, Harrison TM, Grove M, Goffe B, Sapkota S (2004) Thermal structure and exhumation history of the Lesser Himalaya in central Nepal. Tectonics 23:TC5015. doi:10.1029/2003TC001564

    Article  Google Scholar 

  • Bollinger L, Henry P, Avouac JP (2006) Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet Sci Lett 244:58–71

    Article  Google Scholar 

  • Burnham AK, Sweeney JJ (1989) A chemical kinetic model of vitrinite reflectance maturation. Geochim Cosmochim Acta 53:2649–2657

    Article  Google Scholar 

  • Célérier J, Harrison TM, Beyssac O, Hermann F, Dunlan WJ, Webb AAG (2009) The Kumaun and Garwal Lesser Himalaya, India: part 2. Thermal and deformation histories. Geol Soc Am Bull 121:1281–1297

    Article  Google Scholar 

  • Chirouze F, Dupont-Nivet G, Huyghe P, Beek P, Chakraborti T, Bernet M, Erens V (2012) Magnetostratigraphy of the Neogene Siwalik Group in the far eastern Himalaya: Kameng section, Arunachal Pradesh, India. J Asian Earth Sci 44:117–135

    Article  Google Scholar 

  • Chirouze F, Huyghe P, van der Beek P, Chauvel C, Chakraborty T, Dupont-Nivet G, Bernet M (2013) Tectonics, exhumation, and drainage evolution of the eastern Himalaya since 13 Ma from detrital geochemistry and thermochronology, Kameng River Section, Arunachal Pradesh. Geol Soc Am Bull 125(3–4):523–538

    Article  Google Scholar 

  • Compagnini G, Puglisi O, Foti G (1997) Raman spectra of virgin and damaged edge planes. Carbon 35:1793–1797

    Article  Google Scholar 

  • Cooper FJ, Hodges KV, Adams BA (2012) Metamorphic constraints on the character and displacement of the South Tibetan fault system, central Bhutanese Himalaya. Lithosphere L221.1. doi: 10.1130/L221.1

  • Cottle JM, Waters DJ, Riley D, Beyssac O, Jessup MJ (2011) Metamorphic history of the South Tibetan Detachment System, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modeling. J Metamorph Geol 29:561–582

    Article  Google Scholar 

  • Dahlen FA (1990) Critical taper model of fold-and-thrust belts and accretionary wedges. Ann Rev Earth Planet Sci 18:55–99

    Article  Google Scholar 

  • Dahlen FA, Suppe J, Davis D (1984) Mechanics of fold-and-thrust belts and accretionary wedges: cohesive Coulomb theory. J Geophys Res 89:10087–10101

    Article  Google Scholar 

  • Daniel CG, Hollister LS, Parrish RR, Grujic D (2003) Exhumation of the Main Central Thrust from Lower Crustal Depths, Eastern Bhutan Himalaya. J Metamorph Geol 21:317–334

    Article  Google Scholar 

  • Das AK, Bakliwal PC, Dhoundial DP (1975) A brief outline of geology of parts of Kameng district, NEFA. Geol Surv India Misc Publ 24:115–127

    Google Scholar 

  • Dasgupta S, Ganguly J, Neogi S (2004) Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P–T gradient and implications. J Metamorph Geol 22:395–412

    Article  Google Scholar 

  • Dasgupta S, Chakraborty S, Neogi S (2009) Petrology of an Inverted Barrovian sequence of metapelites in Sikkim Himalaya, India: constraints on the tectonics of inversion. Am J Sci 309:43–84

    Article  Google Scholar 

  • Davidson C, Grujic DE, Hollister LS, Schmid SM (1997) Metamorphic reactions related to decompression and synkinematic intrusion of leucogranite, High Himalayan Crystallines, Bhutan. J Metamorph Geol 15:593–612

    Article  Google Scholar 

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172

    Article  Google Scholar 

  • De Sarkar S, Mathew G, Pande K (2013) Arc parallel extension in Higher and Lesser Himalaya, Evidence from Western Arunachal Himalaya, India. J Earth Syst Sci (in press)

  • Deeken A, Thiede RC, Sobel ER, Hourigan JK, Strecker MR (2011) Exhumational variability within the Himalaya of northwest India. Earth Planet Sci Lett 305:103–114

    Article  Google Scholar 

  • Dikshitulu GR, Pandey BK, Krishna Veena, Dhana Raju R (1995) Rb–Sr systematics of granitoids of the 36 Central Gneissic Complex, Arunachal Himalaya: implications on tectonism, stratigraphy and source. J Geol Soc India 45:51–56

    Google Scholar 

  • Dodson MH (1979) Kinetic processes and thermal history of slowly cooling solids. Nature 259:551–553

    Article  Google Scholar 

  • Essene EJ (1989) The current status of thermobarometry in metamorphic rocks. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of Metamorphic belts. Geol Soc Spec Publ 43:1–44

  • Everall NJ, Lumsdon J, Christopher DJ (1991) The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres. Carbon 29:133–137

    Article  Google Scholar 

  • Fraser G, Worley B, Sandiford M (2000) High precision geothermobarometry across the High Himalayan metamorphic sequence, Langtang valley, Nepal. J Metamorph Geol 18:665–681

    Article  Google Scholar 

  • Ganguly J, Dasgupta S, Cheng W, Neogi S (2000) Exhumation history of a section of the Sikkim Himalaya, India: records in the metamorphic mineral equilibria and compositional zoning of garnet. Earth Planet Sci Lett 183:471–486

    Article  Google Scholar 

  • Gansser A (1974) Himalaya. In: Spenser AM (ed) Mesozoic Cenozoic orogenic belts: data for orogenic studies. Geological Society of London, Special Publication, vol 4, pp 267–278

  • Goswami S, Bhowmik SK, Dasgupta S (2009) Petrology of a non-classical Barrovian inverted metamorphic sequence from the western Arunachal Himalaya, India. J Asian Earth Sci 36:390–406

    Article  Google Scholar 

  • Grew ES (1974) Carbonaceous material in some metamorphic rocks of New England and other areas. J Geol 82:50–73

    Article  Google Scholar 

  • Grujic D, Casey M, Davidson C, Hollister LS, Kuendig R, Pavlis TL, Schmid SM (1996) Ductile extrusion of the Higher Himalayan Crystalline in Bhutan; evidence from quartz microfabrics. Tectonophysics 260:21–43

    Article  Google Scholar 

  • Grujic D, Hollister LS, Parrish RR (2002) Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. Earth Planet Sci Lett 198:177–191

    Article  Google Scholar 

  • Harrison TM, Ryerson FJ, Le Fort P, Yin A, Lovera OM, Catlos EJ (1997) A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth Planet Sci Lett 146:E1–E7. doi:10.1016/S0012-821X(96)00215-4

    Article  Google Scholar 

  • Henry P, LePichon X, Goffe B (1997) Kinematic, thermal and petrological model of the Himalayas: constraints related to metamorphism within the under thrust Indian crust and topographic evolution. Tectonophysics 273:31–56

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and Southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350

    Article  Google Scholar 

  • Hollister LS (1993) The role of melt in the uplift and exhumation of orogenic belts. Chem Geol 108:31–48

    Article  Google Scholar 

  • Hubbard MS (1989) Thermobarometric constraints on the thermal history of the main central thrust zone and Tibetan slab, eastern Nepal Himalaya. J Metamorph Geol 7:19–30

    Article  Google Scholar 

  • Hubbard MS (1996) Ductile shear as a cause of inverted metamorphism: example from the Nepal Himalaya. J Geol 104:493–499

    Article  Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology, 2nd edn. Freeman, W.H and Company, Newyork, p 743

    Google Scholar 

  • Jain AK, Manickavasagam RM (1993) Inverted metamorphism in the intracontinental ductile shear zone during Himalayan collision tectonics. Geology 21:407–410

    Article  Google Scholar 

  • Jamieson RA, Beaumont C (2011) Coeval thrusting and extension during lower crustal ductile flow—implications for exhumation of high-grade metamorphic rocks. J Metamorph Petrol 29:33–51

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Hamilton J, Fullsack P (1996) Tectonic assembly of inverted metamorphic sequences. Geology 24:839–842

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Nguyen MH, Lee B (2002) Interaction of metamorphism, deformation, and exhumation in large convergent orogens. J Metamorph Geol 20:9–24

    Article  Google Scholar 

  • Jamieson RA, Beaumont C, Medvedev S, Nguyen MH (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res 109(B06406). doi:10.1029/2003JB002811

  • Jehlička J, Urban O, Pokorný J (2003) Raman spectroscopy of carbon and solid bitumens in sedimentary and metamorphic rocks. Spectrochimica Act A 59(10):2341–2352

    Google Scholar 

  • Kagi H, Tsuchida I, Wakatsuki M, Takahashi K, Kamimura N, Iuchi K, Wada H (1994) Proper understanding of down-shifted Raman spectra of natural graphite: direct estimation of laser-induced rise in sample temperature. Geochim Cosmochim Acta 58:3527–3530

    Article  Google Scholar 

  • Kellett DA, Grujic D (2012) New insight into the South Tibetan detachment system: not a single progressive deformation. Tectonics 31:TC2007. doi:10.1029/2011TC002957

  • Kellett DA, Grujic D, Warren C, Cottle J, Jamieson R, Tenzin T (2010) Metamorphic history of a syn-convergent orogen-parallel detachment: the South Tibetan detachment system, Bhutan Himalaya. J Metamorph Geol 28:785–808

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock forming minerals. Am Min 8:277–279

    Google Scholar 

  • Kohn MJ (2008) P–T–t data from central Nepal support critical taper and repudiate large-scale channel flow of the Greater Himalayan Sequence. Geol Soc Am Bull 120:259–273

    Article  Google Scholar 

  • Kohn MJ, Catlos EJ, Ryerson FJ, Harrison TM (2001) Pressure–temperature–time path discontinuity in the main central thrust zone, central Nepal. Geology 29:571–574

    Article  Google Scholar 

  • Kříbek B, Hrabal J, Landais P, Hladíková J (1994) The association of poorly ordered graphite, coke and bitumens in greenschist facies rocks of the Ponickla Group, Lugicum, Czech Republic: the result of graphitization of various types of carbonaceous matter. J Metamorph Geol 12:493–503

    Article  Google Scholar 

  • Kumar G (1997) Geology of Arunachal Pradesh. Geological Society of India, Bangalore

    Google Scholar 

  • Kumar S, Pathak M (2010) Mineralogy and Geochemistry of Biotites from Proterozoic Granitoids of Western Arunachal Himalaya: evidence of Bimodal Granitogeny and Tectonic Affinity. J Geol Soc India 75:715–730

    Article  Google Scholar 

  • LeFort P (1975) Himalayas, the collided range: present knowledge of the continental arc. Am J Sci 275A:1–44

    Google Scholar 

  • Lespade P, Marchand A, Couzi M, Cruege F (1984) Caractérisation de matériaux carbonés par microspectroscopie Raman. Carbon 22:375–385

    Article  Google Scholar 

  • Long SP, McQuarrie N, Tobgay T, Coutand T, Cooper FJ, Reiners PW, J-A Wartho, Hodges KV (2012) Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics 31:5. doi:10.1029/2012TC003155

    Article  Google Scholar 

  • Ludwig KR (2012) Isoplot 3.75, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no 5

  • McDougall I, Harrison TM (1999) Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press, New York

    Google Scholar 

  • McFarlane AM (1995) An evaluation of the inverted metamorphic gradient at Langtang National Park, central Nepal Himalaya. J Metamorph Geol 13:595–612

    Article  Google Scholar 

  • Molnar P, England P (1990) Late Cenozoic uplift of mountain ranges and global climate change: chicken or egg? Nature 346:29–34

    Article  Google Scholar 

  • Negro F, Beyssac O, Goffe B, SAddiqi O, Boubaounene ML (2006) Thermal structure of the Alboran Domain in Rif (N.Morocco) and western Beltics (S.Spain). Constraints from Raman Spectroscopy of carbonaceous material. J Metamorph Geol 24:309–327

    Article  Google Scholar 

  • Nemanich RJ, Solin SA (1979) First- and second-order Raman scattering from finite-size crystals of graphite. Phys Rev B 20(2):392–401

    Article  Google Scholar 

  • Pasteris JD (1989) In situ analysis in geological thin-sections by Laser Raman micropobe microspectroscopy: a cautionary note. Appl Spectrosc 43:567–570

    Article  Google Scholar 

  • Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicators of degree of metamorphism. Can Mineral 29:1–9

    Google Scholar 

  • Rahl JM, Anderson KM, Brandon MT, Fassoulas C (2005) Raman spectroscopic cabronaceous material thermometry of low-grade metamorphic rocks: calibration and application to tectonic exhumation in Crete, Greece. Earth Planet Sci Lett 240:339–354

    Article  Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens T, DePaolo DJ (1998) Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating. Chem Geol (Isotope Geoscience Section) 145(1–2):117–152

    Google Scholar 

  • Robinson DM, Pearson ON (2006) Exhumation of Greater Himalayan rock along the Main Central Thrust in Nepal: implications for channel flow. Geol Soc Lond Spec Publ 268:255–267

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Garzione CN, Pearson ON, Harrison TM, Catlos EJ (2003) Kinematic model for the Main Central thrust in Nepal. Geology 31:359–362

    Article  Google Scholar 

  • Rosenberg CL, Stünitz H (2003) Deformation and recrystallization of plagioclase along a temperature gradient: an example from the Bergell tonalite. J Struct Geol 25:389–408

    Article  Google Scholar 

  • Royden LH (1993) The steady-state thermal structure of eroding orogenic belts and accretionary prisms. J Geophys Res 98:4487–4507

    Article  Google Scholar 

  • Searle MP, Rex AJ (1989) Thermal model for the Zanskar Himalaya. J Metamorph Geol 7:127–134

    Article  Google Scholar 

  • Searle MP, Waters DJ, Dransfield MW, Stephenson BJ, Walker CB, Walker JD, Rex DC (1999) Thermal and mechanical models for the structural evolution of Zanskar High Himalaya. In: Mac Niocaill C, Ryan PD (eds) Continental tectonics. Geol Soc Lond Spec Publ 164:139–156

  • Shi Y, Wang CY (1987) Two-dimensional modeling of the P–T–t paths of regional metamorphism in simple overthrust terrains. Geology 15:1048–1051

    Article  Google Scholar 

  • Singh RK, Gururajan NS (2011) Microstructures in quartz and feldspar of the Bomdila gneiss from western Arunachal Himalaya. NE India: implication for the geotectonic evolution of the Bomdila mylonitic zone. J Asian Earth Sci 42:1163–1178

    Article  Google Scholar 

  • Sinha K, Menéndez J (1990) Resonant First- and Second-Order Raman Scattering in Graphite. Phys Rev B 41:10845–10847

    Article  Google Scholar 

  • Spear FS (1995) Metamorphic phase equilibria and pressure–temperature–time paths, 2nd edn. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Stephenson BJ, Waters DJ, Searle MP (2000) Inverted metamorphism and the Mail Central Thrust: field relations and thermobarometric constraints from the Kishtwar Window, NW Indian Himalaya. J Metamorph Geol 18:571–590

    Article  Google Scholar 

  • Swapp SM, Hollister LS (1991) Inverted metamorphism within the Tibetan slab of Bhutan: evidence for a tectonically transported heat source. Can Minerol 29:1019–1041

    Google Scholar 

  • Teichmüller M, Durand B (1983) Fluorescence microscopical rank studies on liptinites and vitrinites in peats and coals, and comparison with results of Rock-Eval pyrolysis. Int J Coal Geol 2:197–230

    Article  Google Scholar 

  • Thiede RC, Ehlers TA, Bookhagen B, Strecker MR (2009) Erosional variability along the northwest Himalaya. J Geophys Res 114:F01015. doi:10.1029/2008JF001010

    Article  Google Scholar 

  • Treloar PJ, Guise PG, Coward MP, Searle MP, Windley BF, Person MG, Jan MQ, Luff IW (1989) K–Ar and Ar–Ar geolochronology of the Himalayan collision on NW Pakistan, constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics 8:881–909

    Article  Google Scholar 

  • Tsu R, Gonzalez H, Hernandez I (1978) Observation of splitting of the E2 g mode and two-phonon spectrum in graphites. Solid State Commun 27:507–510

    Article  Google Scholar 

  • Tuinstra F, Koenig JL (1970a) Raman spectrum of graphite. J Chem Phys 53:1126–1130

    Article  Google Scholar 

  • Tuinstra F, Koenig JL (1970b) Characterization of graphite fiber surfaces with Raman spectroscopy. J Compos Mater 4:492–499

    Google Scholar 

  • Valdiya KS (2010) The making of India, geodynamic evolution. Macmillan Publ Ind Ltd, New Delhi, p 816

    Google Scholar 

  • Vannay J-C, Grasemann B (1998) Inverted metamorphism in the High Himalaya of Himachal Pradesh (NW India): phase equilibria versus thermobarometry. Schweiz Mineral Petrogr Mitt 78:107–132

    Google Scholar 

  • Vannay J-C, Grasemann B (2001) Himalayan inverted metamorphism and syn- convergence extension as a consequence of a general shear extrusion. Geol Mag 138:253–276

    Article  Google Scholar 

  • Vannay J-C, Hodges KV (1996) Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. J Metamorph Geol 14:635–656

    Google Scholar 

  • Vannay J-C, Grasemann B, Rahn M, Frank W, Carter, A, Baudraz V, Cosca M (2004) Miocence to Holocene exhumation of metamorphic crustal wedges in NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics TC1014. doi:10.1029/2002TC001429

  • Wada H, Tomita T, Matusuura K, Luchi K, Ito M, Morikiyo T (1994) Graphitisation of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and region metamorphisms, Japan. Contrib Mineral Petrol 118:217–228

    Article  Google Scholar 

  • Wagner GA, Van den Haute P (1992) Fission track dating. Kulwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Wagner J, Ramsteiner M, Wild C, Koidl P (1989) Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys Rev B40:1817–1824

    Google Scholar 

  • Wang A, Dhamelincourt P, Dubessy J, Guerard D, Landais P, Lelaurain M (1989) Characterization of graphite alteration in an uranium deposit by micro-Raman spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. Carbon 27:209–218

    Article  Google Scholar 

  • Warren CJ, Kellett DA, Cottle J, Jamieson RA, Ghalley KS (2011) Probing the depths of the India-Asia collision: U–Th–Pb monazite chronology of granulites from NW Bhutan. Tectonics TC2004. doi:10.1029/2010TC002738

  • Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite–facies graphite; applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557

    Google Scholar 

  • Yardley BWD (1989) An introduction to metamorphic petrology. Longman, New York

    Google Scholar 

  • Yin A, Dubey CS, Kelty TK, Webb AAG, Harrison TM, Chou CY, Célérier J (2010) Geologic correlation of the Himalayan orogen and Indian craton: part 2. Structural geology, geochronology and tectonic evolution of the Eastern Himalaya. Geol Soc Am Bull 122:360–395

    Article  Google Scholar 

  • Yui TF, Huang E, Xu J (1996) Raman spectrum of carbonaceous material: a possible metamorphic grade indicator for low grade metamorphic rocks. J Metamorph Geol 14:115–124

    Article  Google Scholar 

  • Zeitler PK, Meltzer AS, Koons PO, Craw D, Hallet B, Chamberlain CP, Kidd WSF, Park SK, Seeber L, Bishop M, Shroder J (2001) Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today 11:4–9

    Article  Google Scholar 

Download references

Acknowledgments

GM and KP acknowledge the funding provided by the Department of Science and Technology (DST) (IR/S4/ESF-04/2003) and Industrial Research and Consultancy Center (IRCC) (10IRCCBF002). SDS thanks CSIR, HRDG for the JRF fellowship. We thank the handling editors Dr. Rasmus Thiede and Dr. Soumyajit Mukherjee and the three anonymous referees for their very critical comments and thoughtful suggestions that helped to improve the MS considerably. We also thank the Chief Editor, Prof. Wolf-Christian Dullo for his suggestions. The authors thank Ms. Tripti Gurav for help. GM thanks Ms. Dnyanada Salvi for help in editing the MS. Ms. Sharboni Sarkar and Ms. Sapna Shinde are gratefully acknowledged for their help in Ar–Ar analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mathew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 181 kb)

Supplementary material 2 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathew, G., De Sarkar, S., Pande, K. et al. Thermal metamorphism of the Arunachal Himalaya, India: Raman thermometry and thermochronological constraints on the tectono-thermal evolution. Int J Earth Sci (Geol Rundsch) 102, 1911–1936 (2013). https://doi.org/10.1007/s00531-013-0904-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0904-6

Keywords

Navigation