Skip to main content
Log in

Upper crustal shortening and forward modeling of the Himalayan thrust belt along the Budhi-Gandaki River, central Nepal

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A balanced cross-section along the Budhi-Gandaki River in central Nepal between the Main Central thrust, including displacement on that fault, and the Main Frontal thrust reveals a minimum total shortening of 400 km. Minimum displacement on major orogen-scale structures include 116 km on the Main Central thrust, 110 km on the Ramgarh thrust, 95 km on the Trishuli thrust, and 56 km in the Lesser Himalayan duplex. The balanced cross-section was also incrementally forward modeled assuming a generally forward-breaking sequence of thrusting, where early faults and hanging-wall structures are passively carried from the hinterland toward the foreland. The approximate correspondence of the forward modeled result to observe present day geometries suggest that the section interpretation is viable and admissible. In the balanced cross-section, the Trishuli thrust is the roof thrust for the Lesser Himalayan duplex. The forward model and reconstruction emphasize that the Lesser Himalayan duplex grew by incorporating rock from the footwall and transferring it to the hanging wall along the Main Himalayan thrust. As the duplex developed, the Lesser Himalayan ramp migrated southward. The movement of Lesser Himalayan thrust sheets over the ramp pushed the Lesser Himalayan rock and the overburdens of the Greater and Tibetan Himalayan rock toward the erosional surface. This vertical structural movement caused by footwall collapse and duplexing, in combination with erosion, exhumed the Lesser Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad T, Harris N, Bickle M et al (2000) Isotopic constraints on the structural relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geol Soc Am Bull 112:467–477

    Google Scholar 

  • Appel E, Roesler W, Corvinus G (1991) Magnetostratigraphy of the Miocene-Pleistocene Surai Khola Siwaliks in West Nepal. Geophys J Int 105(1):191–198

    Article  Google Scholar 

  • Argles T, Foster G, Whittington A et al (2003) Isotope studies reveal a complete Himalayan section in the Nanga Parbat syntaxis. Geol Soc Am Bull 31:1109–1112

    Google Scholar 

  • Arita K (1983) Origin of the inverted metamorphism of the Lower Himalayas, central Nepal. Tectonophysics 95(1–2):43–60

    Article  Google Scholar 

  • Auden JB (1935) Traverses in the Himalaya. Rec Geol Soc India 69(2):123–167

    Google Scholar 

  • Avouac JP (2003) Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys 46:1–80. doi:10.1016/S0065-2687(03)46001-9

    Article  Google Scholar 

  • Beaumont C, Jamieson RA, Nguyen M et al (2001) Himalayan tectonics explained by extrusion of a low viscosity channel coupled to focused surface denudation. Nature 414:738–742. doi:10.1038/414738a

    Article  Google Scholar 

  • Besse J, Courtillot V (1988) Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic. J Geophys Res 93:11791–11808. doi:10.1029/JB093iB10p11791

    Article  Google Scholar 

  • Bettinelli P, Avouac JP, Flouzat M et al (2006) Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J Geodesy 80:567–589

    Article  Google Scholar 

  • Bhattacharyya K, Mitra G (2009) A new kinematic evolutionary model for the growth of a duplex-an example from the Rangit duplex, Sikkim Himalaya, India. Gond Res 16:697–715

    Article  Google Scholar 

  • Bilham R, Larson K, Freymueller J, Project Idylhim Members (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61–63

    Article  Google Scholar 

  • Bollinger L, Henry P, Avouac JP (2006) Mountain building in the Nepal Himalaya: thermal and kinematic model. Earth Planet Sci Lett 244:58–71. doi:10.1016/j.epsl.2006.01.045

    Article  Google Scholar 

  • Bordet P (1961) Recherches géologiques dans l’Himalaya du Népal, région du Makalu. CNRS, Paris

    Google Scholar 

  • Boyer SE, Elliott D (1982) Thrust systems. Am Assoc Petrol Geol Bull 66(9):1196–1230

    Google Scholar 

  • Brown LD, Zhao W, Nelson KD et al (1996) INDEPTH deep seismic reflection observation of a regionally extensive high-amplitude basement reflector, and associated ‘‘bright spots’’ beneath the northern Yadong-Gulu rift, Tibet. Science 274:1688–1690

    Article  Google Scholar 

  • Brunel M (1975) La nappe du Mahabharat, Himalaya du Nepal Central: Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences, Serie D. Sciences Naturelles 280(5):551–554

    Google Scholar 

  • Burchfiel BC, Chen Z, Hodges, KV et al (1992) The South Tibetan Detachment System, Himalayan Orogen; Extension contemporaneous with and parallel shortening in a collisional mountain belt. Geol Soc Am Spec Pap 269:49

    Google Scholar 

  • Carosi R, Montomoli C, Rubatto D et al (2010) Late oligocene high-temperature shear zones in the core of the higher Himalayan crystallines (Lower Dolpo, western Nepal). Tectonics 29:TC4029. doi:10.1029/2008TC002400

    Article  Google Scholar 

  • Catlos EJ, Harrison TM, Kohn MJ et al (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central thrust, central Nepal Himalaya. J Geophys Res 106:16,177–16204. doi:10.1029/2000JB900375

    Article  Google Scholar 

  • Colchen M, Le Fort P, Pêcher A (1986) Recherches géologiques dans l’Himalaya du Népal; Annapurna-Manaslu-Ganesh Himal. Editions du Centre National de la Recherche Scientifique, Scale 1:200,000

  • Coleman ME (1996) Orogen-parallel and orogen-perpendicular extension in the central Nepalese Himalayas. Geol Soc Am Bull 108:1594–1607

    Article  Google Scholar 

  • Copley A, Avouac JP, Royer JY (2010) India-Asia collision and the Cenozoic slowdown of the Indian plate: implications for the forces driving plate motions. J Geophys Res 115:B03410. doi:10.1029/2009JB006634

    Article  Google Scholar 

  • Corrie SL, Kohn MJ (2011) Metamorphic history of the central Himalaya, Annapurna region, Nepal, and implications for tectonic models. Geol Soc Am Bull 123:1863–1879

    Google Scholar 

  • Coward MP, Butler RHW (1985) Thrust tectonics and the deep structure of the Pakistan Himalaya. Geology 18:417–420

    Article  Google Scholar 

  • Dahlstrom CDA (1969) Balanced cross sections. Can J Earth Sci 6(4):743–757

    Article  Google Scholar 

  • Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88:1153–1172

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J et al (1998) Neogene foreland basin deposits, erosional unroofing, and the kinematic history of the Himalayan fold-thrust belt, western Nepal. Geol Soc Am Bull 110(1):2–21

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J et al (2000) Tectonic implications of U-Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288(5465):497–499

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Quade J et al (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20(4):487–509

    Article  Google Scholar 

  • Dhital MR (2012) Distribution of frontal faults in Nepal Himalaya. 27th Himalayan-Karakoram-Tibet workshop (HKT) abstract with program. NGS 45:106

    Google Scholar 

  • Dubey AK, Misra R, Bhakuni SS (2001) Erratic shortening from balanced cross-sections of the western Himalayan foreland basin: causes and implications for basin evolution. J Asian Earth Sci 19:765–775

    Article  Google Scholar 

  • Dupont-Nivet G, Lippet PC, Hinsbergen DJJ et al (2010) Palaeolatitude and age of the Indo-Asia collision: palaeomagentic constraints. Geophys J Int 182:1189–1198. doi:10.1111/j.1365-246X.2010.04697.x

    Article  Google Scholar 

  • Gansser A (1964) Geology of the Himalayas. Wiley Interscience, London, p 289

    Google Scholar 

  • Gansser A (1983) Geology of the Bhutan Himalaya. Birkhäuser Verlag, Basel, p 181

    Google Scholar 

  • Gautam P, Roesler W (1999) Depositional chronology and fabric of Siwalik Group sediments in central Nepal from magnetostratigraphy and magnetic anisotropy. J Asian Earth Sci 17(5–6):659–682

    Article  Google Scholar 

  • Gehrels GE, DeCelles PG, Martin A et al (2003) Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt. GSA Today 18(9):4–9

    Article  Google Scholar 

  • Gehrels GE, DeCelles PG, Ojha TP et al (2006) Geologic and U-Th-Pb geochronologic evidence for early Paleozoic tectonism in the Kathmandu thrust sheet, central Nepal Himalaya. J Geol Soc Am Bull 118:185–198. doi:10.1180/B25753.1

    Article  Google Scholar 

  • Godin L, Parrish RR, Brown RL et al (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: insight from U-Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20(5):729–747. doi:10.1029/2000TC001204

    Article  Google Scholar 

  • Godin L, Grujic D, Law R et al (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: and introduction. Geol Soc Spec Publ 268:1–23

    Google Scholar 

  • Groshong RH Jr, Withjack MO, Schlische RW et al (2012a) Bed length does not remain constant during deformation: recognition and why it matters. J Struct Geol 41:86–97. doi:10.1016/j.jsg.2012.02.009

    Article  Google Scholar 

  • Groshong RH Jr, Bond C, Gibbs A (2012b) Preface: structural balancing at the start of the twenty first century: 100 years since Chamberlin. J Struct Geol 41:1–5

    Article  Google Scholar 

  • Grujic D (2006) Channel flow and continental collision tectonics: an overview. In: Law RD, Searle MP (eds) Channel flow, extrusion and exhumation in continental collision zones. Geol Soc Lond Spec Publ 268:25–37. doi:10.1144/GSL.SP.2006.268.01.02

  • Grujic D, Casey M, Davidson C et al (1996) Ductile extrusion of the Higher Himalayan crystalline in Bhutan: evidence from quartz microfabrics. Tectonophysics 260:21–43

    Article  Google Scholar 

  • Guillot S (1999) An overview of the metamorphic evolution in central Nepal. J Asian Earth Sci 17(5–6):718–725

    Google Scholar 

  • Hagen T (1969) Report on the geological survey of Nepal preliminary reconnaissance. Zürich Mémoires de la Societe Helvétique des Sciences Naturelles LXXXVI/1, 185

  • Harris N (2007) Channel flow and the Himalayan-Tibetan orogen: a critical review. J Geol Soc London 164:511–523. doi:10.1144/0016-76492006-133

    Article  Google Scholar 

  • Harrison TM, Copeland P, Kidd WSF et al (1992) Raising Tibet. Science 255:1663–1670

    Article  Google Scholar 

  • Harrison TM, Copeland P, Hall SA et al (1993) Isotopic preservation of Himalayan/Tibet uplift denudation, and climatic histories of two molasse deposits. J Geol 101:159–177

    Article  Google Scholar 

  • Harrison TM, McKeegan KD, Le Fort P (1995) Detection of inherited monazite in the Manaslu leucogranite by 208Pb/232Th ion microprobe dating: crystallization age and tectonic significance. Earth Planet Sci Lett 183:271–282

    Article  Google Scholar 

  • Harrison TM, Grove M, Lovera OM et al (1998) A model for the origin of Himalayan anatexis and inverted metamorphism. J Geophys Res 103:27,017–27032

    Article  Google Scholar 

  • Hashimoto S, Ohta Y, Akiba C (1973) Geology of the Nepal Himalayas. Saikon, Tokyo

    Google Scholar 

  • Hatcher RD, Hooper RJ (1992) Evolution of crystalline thrust sheets in the internal parts of mountain chains. In: McClay KR (ed) Thrust tectonics, Chapman and Hall, London, pp 217–234

  • Hauck ML, Nelson KD, Brown LD et al (1998) Crustal structure of the Himalayan Orogen at approximately 90 degrees east longitude from Project INDEPTH deep reflection profiles. Tectonics 17(4):481–500

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya geological observations of swiss expedition. Gebruder Fretz, Zurich, pp 1–246

  • Herman F, Copeland P, Avouac, JP et al (2010) Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J Geophys Res 115:B06407. doi:10.1029/2008JB006126

  • Hodges KV (2000) Tectonics of the Himalaya and southernTibet from two perspectives. Geol Soc Am Bull 112: 324–350

    Google Scholar 

  • Hodges KV, Burchfiel BC, Royden LH et al (1993) The metamorphic signature of contemporaneous extension and shortening in the central Himalayan orogen: data from the Nyalam transect, southern Tibet. J Metmorph Geol 11:721–737

    Article  Google Scholar 

  • Hodges KV, Parrish RR, Searle MP (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics 15(6):1264–1291

    Article  Google Scholar 

  • Igner S, Harris NBW (1992) Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal. J Metamorph Geol 10(3):439–452

    Article  Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM (2002) Himalayan collisional tectonics. Gond Res Gp Mem No. 7. Field Science, 1398 Hashimoto

  • Jamieson RA, Beaumont C, Medvedev S et al (2004) Crustal channel flows: 2. Numerical models with implications for metamorphism in the Himalayan-Tibetan orogen. J Geophys Res 109:B06407. doi:10.1029/2003JB002811

    Article  Google Scholar 

  • Johnson MRW (1994) Volume balance of erosion loss and sediment deposition related to Himalayan uplift. J Geol Soc Lond 151:217–220

    Article  Google Scholar 

  • Johnson MRW, Oliver GJH, Parrish RR et al (2001) Synthrusting metamorphism, cooling, and erosion of the Himalayan Kathmandu Complex, Nepal. Tectonics 20(3):394–415

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Pandey MR et al (1999) Oblique convergence in the Himalayas of Western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 29:1933–1936

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Gamond JF et al (2004) Current shortening across the Himalayas of Nepal. Geophys J Int 157:1–14

    Article  Google Scholar 

  • Khanal S (2009) Upper crustal shortening and forward modeling of the Himalayan fold-thrust belt along the Budhi-Gandaki River, central Nepal. University of Alabama, Thesis

    Google Scholar 

  • Kohn MJ (2008) P–T–t data from central Nepal support critical taper and repudiate large scale channel flow of the Greater Himalayan sequence. J Geol Soc Am Bull 120:259–273. doi:10.1180/B26252.1

    Article  Google Scholar 

  • Kohn MJ, Wieland M, Parkinson CD, Upreti BN (2004) Miocene faulting at plate tectonic velocity in the Himalaya of central Nepal. Earth Planet Sci Lett 228:299–310. doi:10.1016/j.epsl.2004.10.007

    Article  Google Scholar 

  • Kohn MJ, Weiland MS, Parkinson CD et al (2005) Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. J Meta Pet 23:399–406. doi:10.1111/j.1525-1814.2005.00584.x

    Article  Google Scholar 

  • Larson KP, Godin L (2009) Kinematics of the Greater Himalayan sequence, Dhaulagiri Himal: implications for the structural framework of central Nepal. J Geol Soc Lond 115:25–43

    Google Scholar 

  • Larson KP, Godin L, Price RA (2010) Relationships between displacement and distortion in orogens: linking the Himalayan foreland and hinterland in central Nepal. J Geol Soc Am Bull 122:1116–1134. doi:10.1130/B30073.1

    Google Scholar 

  • Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res 105(3):5735–5770

    Article  Google Scholar 

  • Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the Greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc Lond 161:305–320

    Article  Google Scholar 

  • Le Fort P (1975) Himalayas: the collided range, present knowledge of the continental arc. Am J Sci 275(A):1–44

    Google Scholar 

  • Le Fort P, Debon F, Pêcher A, Sonet JVP (1986) The 500 Ma magmatic event in alpine southern Asia, a thermal episode at Gondwana scale. In: Le Fort P, Colchen M, Montenat C (eds) Évolution des domaines orogéniques d'Asie méridionale (de la Turquie à l'Indonésie): Nancy, Science de la Terre, pp 191–209

  • Liebke U, Appel E, Ding L et al (2010) Position of the Lhasa terrane prior to India-Asia collision derived from palaeomagnetic inclinations of 53 Ma old dykes of the Linzhou Basin: constraints on the age of collision and post-collisional shortening within the Tibetan Plateau. Geophys J Int 182:1199–1215. doi:10.1111/j.1365-246X.2010.04698.x

    Article  Google Scholar 

  • Long S, McQuarrie N (2010) Placing limits on channel flow: insights from the Bhutan Himalaya. Earth Planet Sci Lett. doi:10.1016/j.epsl.2009.12.033

    Google Scholar 

  • Long S, McQuarrie N, Tobgay T et al (2011) Geometry and crustal shortening of the Himalayan fold thrust belt, eastern and central Bhutan. Geol Soc Am Bull. doi:10.1130/B30203.1

  • Lyon-Caen H, Molnar P (1983) Constraints on the structure of the Himalaya from an analysis of gravity anomalies and a flexural model of the lithosphere. J Geophys Res 88:8171–8191

    Google Scholar 

  • Lyon-Caen H, Molnar P (1985) Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin. Tectonics 4:518–538

    Article  Google Scholar 

  • Macfarlane AM (1995) An evaluation of the inverted metamorphic gradient at Langtang National Park, central Nepal Himalaya. J Metamorph Geol 13(5):595–612

    Article  Google Scholar 

  • Macfarlane AM, Hodges KV, Lux D (1992) A structural analysis of the Main Central thrust zone, Langtang National Park, central Nepal Himalaya. J Geol Soc Am Bull 104(11):1402–1889

    Google Scholar 

  • Manickavasagam RM, Jain AK, Singh S Asokan A (1999) Metamorphic evolution of the northwest Himalaya, India: pressure-temperature data, inverted metamorphism, and exhumation in the Kashmir, Himachal, and Garhwal Himalayas, in Himalaya and Tibet: In: Macfarlane A, Aorkhabi RB, Quade J (eds) Mountain roots to mountain tops. Geol Soc Am Spec Pap 328:179–198

  • Martin AJ, DeCelles PG, Gehrels GE et al (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. J Geol Soc Am Bull 117:926–944. doi:10.1180/B25646.1

    Article  Google Scholar 

  • Martin AJ, Burgy KD, Kaufman AJ et al (2011) Stratigraphic and tectonic implications of field and isotopic constraints on depositional ages of Proterozoic Lesser Himalayan rocks in central Nepal. Precam Res 185:1–17

    Article  Google Scholar 

  • McQuarrie N, Robinson D, Long S et al (2008) Preliminary stratigraphic and structural architecture of Bhutan: implications for the along strike architecture of the Himalayan system. Earth Planet Sci Lett 105:105–117

    Article  Google Scholar 

  • Mishra P, Mukhopadhyay DK (2012) Structural evolution of the frontal fold-thrust belt, NW Himalayas from sequential restoration of balanced cross-sections and its hydrocarbon potential. Geol Soc Lond Spec Publ 366. doi:10.1144/SP366.6

  • Mitra G (1978) Ductile deformation zones and mylonites: the mechanical processes involved in the deformation or crystalline basement rocks. Am J Sci 278:1057–1084

    Article  Google Scholar 

  • Mitra G, Bhattacharyya K, Mukul M (2010) The lesser Himalayan duplex in Sikkim: implications for variations in Himalayan shortening. J Geol Soc India 175:289–301

    Article  Google Scholar 

  • Moretti I, Callot JP (2012) Area, length and thickness conservation: dogma or reality? J Struct Geol 41:64–75. doi:10.1016/j.jsg.2012.02.014

    Article  Google Scholar 

  • Mugnier JL, Huyghe P (2006) Ganges basin geometry records a pre-15 Ma isostatic rebound of Himalaya. Geology 34:445–448

    Google Scholar 

  • Mugnier JL, Mascle G, Faucher T (1992) La structure des Siwalik de l’Ouest Ne′pal: un prisme d’accre′-tion intracontinental. Bulletin de la Socie′te′ Ge′ologique de France 163:585–595

    Google Scholar 

  • Mugnier JL, Leturmy P, Mascle G et al (1999) The Siwaliks of western Nepal I. Geometry and kinematics. J Asian Earth Sci 17:629–642

    Article  Google Scholar 

  • Mukherjee S (2005) Channel flow, ductile extrusion and exhumation of lower-mid crust in continental collisional zones. Curr Sci 89:435–436

    Google Scholar 

  • Mukherjee S (2013a) Channel flow extrusion model to constrain dynamic viscosity and Prandtl number of the Higher Himalayan shear zone. Int J Earth Sci. doi:10.1007/s00531-012-0806-z

    Google Scholar 

  • Mukherjee S (2013b) Higher Himalayan shear zone, Bhagirathi section (NW Himalaya, India)—its structures, backthrusts, and extrusion mechanism by both channel flow and critical taper mechanisms. Int J Earth Sci. doi:10.1007/s00531-012-0861-5

    Google Scholar 

  • Mukherjee S, Koyi HA (2009) Flanking microstructures. Geol Mag 146:517–526

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010a) Higher Himalayan shear zone, Sutlej section: structural geology and extrusion mechanism by various combinations of simple shear, pure shear and channel flow in shifting modes. Int J Earth Sci 99:1267–1303

    Article  Google Scholar 

  • Mukherjee S, Koyi HA (2010b) Higher Himalayan shear zone, Zanskar Section—Microstructural studies and extrusion mechanism by a combination of simple shear and channel flow. Int J Earth Sci 99:1083–1110

    Article  Google Scholar 

  • Mukherjee S, Koyi HA, Talbot CJ (2012) Implications of channel flow analogue models in extrusion of the Higher Himalayan shear zone with special reference to the out-of-sequence thrusting. Int J Earth Sci 101:253–272

    Article  Google Scholar 

  • Mukhopadhyay DK, Mishra P (2005) A balanced cross section across the Himalayan frontal fold–thrust belt, Subathu area, Himachal Pradesh, India: thrust sequence, structural evolution and shortening. J Asian Earth Sci 25:735–746

    Article  Google Scholar 

  • Mukhrerjee S, Mulchrone K (2013) Viscous dissipation pattern in incompressible Newtonian simple shear zone—an analytical model. (in press)

  • Murphy MA, Yin A (2003) Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus suture zone, southwest Tibet. J Geol Soc Am Bull 115:21–34. doi:10.1180/0016-7606(2003)

    Article  Google Scholar 

  • Nabelek J, Hetenyi G, Vergne J et al (2009) Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325:1371–1374

    Article  Google Scholar 

  • Najman Y, Appel E, Fadel MB et al (2010) Timing of India-Asia collision: geological, biostratigraphic and paleomagnetic constraints. J Geophys Res. doi:10.1029/2010JB007673

    Google Scholar 

  • Nazarchuk, JH (1993) Structure and geochronology of the Greater Himalaya, Kali Gandaki region, west-central Nepal, thesis, Carleton University, Ottawa, Canada

  • Nelson KD, Zhao WJ, Brown LD et al (1996) Partially molten middle crust beneath southern Tibet: synthesis of project INDEPTH results. Science 174:1684–1688

    Article  Google Scholar 

  • Ni J, Barazangi M (1984) Seismotectonics of the Himalayan collision zone; geometry of the underthrusting Indian Plate beneath the Himalaya. J Geophys Res 89(2):1147–1163

    Article  Google Scholar 

  • Northrup CJ (1996) Structural expressions and tectonic implications of general noncoaxial flow in the midcrust of a collisional orogen: the northern Scandinavian Caledonides. Tectonics 15:490–505

    Article  Google Scholar 

  • Ojha TP, Butler RF, Quade J et al (2000) Magnetic polarity stratigraphy of the Neogene Siwalik Group at Khutia Khola, far western Nepal. J Geol Soc Am Bull 112(3):424–434

    Article  Google Scholar 

  • Ojha TP, Butler RF, DeCelles PG et al (2008) Magnetic polarity stratigraphy of the Neogene foreland basin deposits of Nepal. Basin Res. doi:10.1111/j.1865-2117.2008.00374.x

    Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP et al (1995) Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22(7):751–754

    Article  Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP et al (1999) Seismotectonics of the Nepal Himalaya from a local seismic network. J Asian Earth Sci 17(5–6):703–712

    Article  Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the lesser and Greater Himalayan sequences, Nepalese Himalaya. J Geol Soc Am Bull 108:904–911

    Article  Google Scholar 

  • Patriat P, Achache J (1984) Indian-Asia collision chronology has implications for crustal shortening and driving mechanisms of plates. Nature 311:615–621. doi:10.1038/311615a0

    Article  Google Scholar 

  • Pearson ON (2002) Structural evolution of the central Nepal fold-thrust belt and regional tectonic and structural significance of the Ramgarh thrust. University of Arizona, Dissertation

    Google Scholar 

  • Pearson ON, DeCelles PG (2005) Structural geology and regional tectonic significance of the Ramgarh thrust, Himalayan fold-thrust belt of Nepal. Tectonics 24:TC4008. doi:10.1029/2003TC001617

    Article  Google Scholar 

  • Pêcher A (1977) Geology of the Nepal Himalaya; deformation and petrography in the Main Central thrust zone. In: Jest C (ed) Himalaya; Sciences de la terre: Paris, Centre National de la Recherche Scientifique, pp 301–318

  • Pognante U, Castelli D, Benna P et al (1990) The crystalline units of the High Himalayas in the Lahul-Zanskar region (northwest India): metamorphic and tectonic history and geochronology of the collided and imbricated Indian plate. Geol Mag 127:101–116

    Article  Google Scholar 

  • Powell CM, Conaghan PJ (1973) Plate tectonics and the Himalayas. Earth Planet Sci Lett 20:1–20. doi:10.1016/0012-821X(73)90184-9

    Article  Google Scholar 

  • Rai SM, Guillot S, Le Fort P, Upreti BN (1998) Pressure-temperature evolution in the Kathmandu and Gosainkunda regions, central Nepal. J Asian Earth Sci 16(2–3):283–298

    Article  Google Scholar 

  • Ratschbacher L, Frisch W, Guanghua L (1994) Distributed deformation in southern and western Tibet during and after the India-Asia collision. J Geophys Res 99:19,917–19945

    Article  Google Scholar 

  • Richards A, Parrish R, Harris N et al (2006) Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34:341–344. doi:10.1130/G22169.1

    Google Scholar 

  • Robinson DM (2008) Forward modeling the kinematic sequence of the central Himalayan thrust belt, western Nepal. Geosphere 4(5):785–801. doi:10.1180/GES00163.1

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Patchett PJ, Garzione CN (2001) The kinematic evolution of the Nepalese Himalaya interpreted from Nd isotopes. Earth Planet Sci Lett 192:507–521

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Garzione CN et al (2003) Kinematic model for the Main Central thrust in Nepal. Geology 31:359–362. doi:10.1180/0091-7618(2003)

    Article  Google Scholar 

  • Robinson DM, DeCelles PG, Copeland P (2006) Tectonic evolution of the Himalayan thrust belt in western Nepal: implications for channel flow models. J Geol Soc Am Bull 118:865–885. doi:10.1180/B25911.1

    Article  Google Scholar 

  • Rosler W, Metzler W, Appel E (1997) Neogene magnetic polarity stratigraphy of some fluviatile Siwalik sections, Nepal. Geophys J Int 130:89–111

    Article  Google Scholar 

  • Rowan MG, Ratliff RA (2012) Cross-section restoration of salt-related deformation: Best practices and potential pitfalls. J Struct Geol 41:24–37

    Article  Google Scholar 

  • Rowley DB (1996) Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet Sci Lett 145:1–13

    Article  Google Scholar 

  • Sakai H (1983) Geology of the Tansen group of the lesser Himalayas in Nepal: memoirs of the Faculty of Science, Kyushu University, Series D. Geology 15:27–74

    Google Scholar 

  • Sastri VV, Bhandari LL, Raju ATR, Datta AK (1971) Tectonic framework and subsurface stratigraphy of the Ganga Basin. J Geol Soc India 12(3):222–233

    Google Scholar 

  • Schelling D (1992) The tectonostratigraphy and structure of the eastern Nepal Himalaya. Tectonics 11(5):925–943

    Article  Google Scholar 

  • Schelling D, Arita K (1991) Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal Himalaya. Tectonics 10(5):851–862

    Article  Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A et al (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435:1222–1225

    Article  Google Scholar 

  • Searle MP, Godin L (2003) The South Tibetan detachment and the Manaslu leucogranite: a structural reinterpretation and restoration of the Annapurna-Manaslu Himalaya, Nepal. J Geol 111:505–523. doi:10.1086/376763

    Article  Google Scholar 

  • Searle MP, Szulc AG (2005) Channel flow and ductile extrusion of the high Himalayan slab—the Kangchenjunga–Darjeeling profile, Sikkim Himalaya. J Asian Earth Sci 25:173–185

    Article  Google Scholar 

  • Searle MPR, Law L, Godin K et al (2008) Defining the Himalayan Main Central thrust in Nepal. J Geol Soc Lond 165:523–534. doi:10.1144/0016-76492007-081

    Article  Google Scholar 

  • Shrestha SB, Shrestha JN, Sharma SR (1984) Geological map of central Nepal. Dep Mines Geol Kathmandu Scale 1(250):000

    Google Scholar 

  • Sinclair HD, Gibson M, Naylor M, Morris RG (2005) Asymmetric growth of the Pyrenees revealed through measurement and modeling of orogenic fluxes. Am J Sci 305:369–406. doi:10.2475/ajs.305.5.369

    Article  Google Scholar 

  • Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): implication for evolution of the Himalayan fold-and-thrust belt. Tectonics 18:89–109. doi:10.1029/93TC01180

    Article  Google Scholar 

  • Stöcklin J (1980) Geology of Nepal and its regional frame. J Geol Soc Lond 187:1–34

    Article  Google Scholar 

  • Stöcklin J, Bhattarai KD (1980) Geologic map of the Kathmandu area and central Mahabharat Range. Dep Mines Geol Kathmandu Scale 1(250):000

    Google Scholar 

  • Szulc AG, Najman Y, Sinclair H et al (2006) Tectonic evolution of the Himalaya constrained by detrital 40Ar/39Ar, Sm/Nd and petrographic data from the Siwalik foreland basin succession, SW Nepal. Basin Res 18:375–391

    Article  Google Scholar 

  • TokuokaT Takayasu K, Yoshida M, Hisatomi K (1986) The Churia (Siwalik) Group of the Arung Khola area, west central Nepal. Mem Fac Sci Shimane Univ 20:185–210

    Google Scholar 

  • Upreti BN (1996) Stratigraphy of the western Nepal Lesser Himalaya. J Nepal Geol Soc 18:11–28

    Google Scholar 

  • Upreti BN, Le Fort P (1999) Lesser Himalayan crystalline nappes of Nepal: problem of their origin, in advances on the geology of the Himalaya, focus on Nepal geology. J Asian Earth Sci 328:225–238

    Google Scholar 

  • Valdiya KS (1980) Geology of the Kumaon lesser Himalaya: Dehra Dun. Wadia Institute of Himalayan Geology, India

    Google Scholar 

  • Vannay JC, Grasemann B, Rahn M et al (2004) Miocene to holocene exhumation of metamorphic crustal wedge in the NW Himalaya: evidence for tectonic extrusion coupled to fluvial erosion. Tectonics 23(TC1014):1–24. doi:10.1029/2002TC001429

    Google Scholar 

  • Whittington A, Foster G, Harris N et al (1999) Lithostratigraphic correlations in the western Himalaya—an isotopic approach. Geology 27:585–588

    Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Zhang J, Guo L (2007) Structure and geochronology of the southern Xainza-Dinggye rift and its relationship to the South Tibetan Detachment System. J Asian Earth Sci 29:722–736

    Article  Google Scholar 

  • Zhang PZ et al (2004) Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 32:809–812

    Article  Google Scholar 

  • Zhao W, Nelson KD, Project INDEPTH Team (1993) Deep seismic-reflection evidence continental underthrusting beneath southern Tibet. Nature 366:555–557

    Article  Google Scholar 

Download references

Acknowledgments

Support for this project was provided to S. Khanal by the Geological Sciences Advisory Board (GSAB) Scholarship, Graduate School, Capstone International, and Graduate Student Services at the University of Alabama. We acknowledge the donation of the 2D Move software from Midland Valley. H. Kandel, P. C. Neupane and P. Simkhada provided field assistance. G. Neupane shared his knowledge and experience of the Himalaya and provided fruitful suggestions. D. Robinson acknowledges support from the Cooperative Institute for Research and Sciences (CIRES) at the University of Colorado at Boulder for time to edit this manuscript while a visiting faculty fellow. This manuscript benefited from the comments of S. Mukherjee, R. A. Ratliff and an anonymous reviewer. T. Masterlark and A. Weislogel served on Khanal’s thesis committee and improved early versions of this manuscript. We thank W.-C. Dullo (IFM-Geomar, Chief Editor) and Monika Dullo (Managing Editor) for editorial handling of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodha Khanal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanal, S., Robinson, D.M. Upper crustal shortening and forward modeling of the Himalayan thrust belt along the Budhi-Gandaki River, central Nepal. Int J Earth Sci (Geol Rundsch) 102, 1871–1891 (2013). https://doi.org/10.1007/s00531-013-0889-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0889-1

Keywords

Navigation