International Journal of Earth Sciences

, Volume 102, Issue 5, pp 1447–1466 | Cite as

The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central–Western Argentina: integrating resistivity surveys with structural and geomorphological data

  • Sabrina Y. FazzitoEmail author
  • José M. Cortés
  • Augusto E. Rapalini
  • Carla M. Terrizzano
Original Paper


The geometry and related geomorphological features of the right-lateral strike-slip El Tigre Fault, one of the main morphostructural discontinuities in the Central–Western Precordillera of Argentina, were investigated. Achievements of this survey include: recognition of structural and geometrical discontinuities along the fault trace, identification and classification of landforms associated with local transpressional and transtensional sectors, observation of significant changes in the fault strike and detection of right and left bends of different wavelength. In the Central Segment of the El Tigre Fault, 2D electrical resistivity tomography surveys were carried out across the fault zone. The resistivity imaging permitted to infer the orientation of the main fault surface, the presence of blind fault branches along the fault zone, tectonic tilting of the Quaternary sedimentary cover, subsurface structure of pressure ridges and depth to the water table. Based on this information, it is possible to characterize the El Tigre Fault also as an important hydro-geological barrier. Our survey shows that the main fault surface changes along different segments from a high-angle to a subvertical setting whilst the vertical-slip component is either reverse or normal, depending on the local transpressive or transtensive regime induced by major bends along the trace. These local variations are expressed as sections of a few kilometres in length with relatively homogeneous behaviour and frequently separated by oblique or transversal structures.


El Tigre Fault Argentine Precordillera Neotectonics Fault structure Geomorphology 2D electrical resistivity tomography 



The authors are very grateful for the financial provided by Universidad de Buenos Aires (UBACyT 20020100100778 and UBACyT 100597 grants) and CONICET (PIP-CONICET 11220080102295 grant). We also would like to thank Horacio Lippai for technical support. ASTER satellite imagery was kindly provided by SEGEMAR. Daniel Pérez generously contributed in their preparation. Careful corrections and suggestions from Riccardo Caputo and Jonas Kley, which helped to improve the manuscript, are deeply appreciated and thanked.

Supplementary material

531_2013_873_MOESM1_ESM.pdf (317 kb)
Supplementary material 1 (PDF 317 kb)


  1. Abad ME, Robles A, Manrique W, Bastías H (1990) Control de movimientos tectónicos en la falla “El Tigre”. 11° Congreso Geológico Argentino. San Juan. Actas 2:449–451Google Scholar
  2. Allmendinger RW, Figueroa D, Snyder D, Beer J, Mpodozis C, Isacks BL (1990) Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9:789–809CrossRefGoogle Scholar
  3. Aparicio EP (1984) Geología de San Juan. Facultad de Ciencias exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, 167 ppGoogle Scholar
  4. Baldis BA, Beresi MS, Bordonaro LO, Vaca A (1982) Síntesis evolutiva de la Precordillera Argentina. 5o Congreso Latinoamericano de Geología, Buenos Aires. Actas 4:399–445Google Scholar
  5. Baraldo JA, Montea AL, Soechting W (1990) Triásico de San Juan. In: Bordonaro O (ed) Relatorio de Geología y Recursos Naturales de la provincia de San Juan, 124–139. 11° Congreso Geológico Argentino, San JuanGoogle Scholar
  6. Basile YA (2004) Estudio geológico y geofísico del sector sur de las Lomas del Inca, provincia de San Juan. Trabajo final de Licenciatura. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 125 ppGoogle Scholar
  7. Bastías HE (1985) Fallamiento cuaternario en la región sismotectónica de Precordillera. Tesis Doctoral. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, 160 ppGoogle Scholar
  8. Bastías J (1989) Morfología y análisis de desplazamiento en la falla El Tigre-San Juan, Argentina. Tesis de licenciatura. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, 95 ppGoogle Scholar
  9. Bastías HE (1990a) Discontinuidades tectónicas a la latitud de 32° Sur y su importancia en las hipótesis de evolución de Precordillera. 11° Congreso Geológico Argentino, San Juan. Actas 2:407–411Google Scholar
  10. Bastías JA (1990b) Noroeste argentino-Fallas transcurrentes. Cuencas transtensivas. 11° Congreso Geológico Argentino, San Juan. Actas 2:413–416Google Scholar
  11. Bastías HE, Bastías JA (1987) Fallamiento rumbo-deslizante en el borde oriental de los Andes entre los 32 y 26 grados de latitud sur. 10° Congreso Geológico Argentino, San Miguel de Tucumán. Actas 1:207–210Google Scholar
  12. Bastías HE, Uliarte E (1987) Morfología de la falla rumbo—deslizante El Tigre entre los ríos Jáchal y San Juan. 10° Congreso Geológico Argentino, San Miguel de Tucumán. Actas 1:251–254Google Scholar
  13. Bastías JA, Uliarte E (1991) Tectoformas de transcurrencias, Falla El Tigre, sector central, San Juan, Argentina. 6° Congreso Geológico Chileno. Volumen 1. Resúmenes expandidos, 505–509Google Scholar
  14. Bastías HE, Weidmann NE, Pérez AM (1984) Dos zonas de fallamiento Pliocuaternario en la Precordillera de San Juan. 9° Congreso Geológico Argentino, S.C. Bariloche. Actas 2:329–341Google Scholar
  15. Bastías H, Uliarte E, Pérez MA (1985) Desplazamiento de rumbo en el sistema de fallamiento El Tigre, borde occidental de Precordillera. Primeras Jornadas Geológicas de Precordillera. San Juan. Actas 1:221–225Google Scholar
  16. Bastías HE, Uliarte E Paredes J de D, Sanchez A, Bastías JA, Ruzycki L, Perucca P (1990) Neotectónica de la provincia de San Juan. 11° Congreso Geológico Argentino, San Juan. Relatorio de geología y recursos naturales de la Provincia de San Juan, pp 228–244Google Scholar
  17. Bastías HE, Tello GE, Perucca LP, Paredes J de D (1993) Peligro sísmico y neotectónica. 12° Congreso Geológico Argentino y 2° Congreso de Exploración de Hidrocarburos (Mendoza), In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Relatorio 6(1):645–658Google Scholar
  18. Beer JA, Allmendinger RW, Figueroa DA, Jordan TE (1990) Seismic stratigraphy of a Neogene piggy-back basin, Argentina. Am Assoc Petr Geol Bull 74:1183–1202Google Scholar
  19. Caputo R, Piscitelli S, Oliveto A, Rizzo E, Lapenna V (2003) The use of electrical resistivity tomographies in active tectonics: examples from Tyrnavos Basin, Greece. J Geodyn 36:19–35CrossRefGoogle Scholar
  20. Caputo R, Salviulo L, Piscitelli S, Loperte A (2007) Late Quaternary activity along the Scorciabuoi Fault (Southern Italy) as inferred from electrical resistivity tomographies. Ann Geophys 50(2):213–223Google Scholar
  21. Cardó R, Díaz IN (2005) Memoria Hoja Geológica 3169-I, Rodeo. Servicio Geológico Minero Argentino, Buenos AiresGoogle Scholar
  22. Colella A, Lapenna V, Rizzo E (2004) High-resolution imaging of the High Agri Valley Basin (Southern Italy) with electrical resistivity tomography. Tectonophysics 386:29–40CrossRefGoogle Scholar
  23. Contreras VH, Damiani O, Milana JP, Bracco AI, Barrera OM (1990) Paleógeno y Neógeno de San Juan. 11° Congreso Geológico Argentino, San Juan. Actas, pp 154–185Google Scholar
  24. Cortés JM, Cegarra M (2004) Plegamiento cuaternario transpresivo en el piedemonte suroccidental de la Precordillera sanjuanina. Asociación Geológica Argentina, Serie D, Publicación Especial N°7, pp 68–75, Buenos AiresGoogle Scholar
  25. Cortés JM, Vinciguerra P, Yamín M, Pasini MM (1999) Tectónica Cuaternaria de la Región Andina del Nuevo Cuyo (28°–38° LS). In: Caminos R (ed): Geología Argentina. Subsecretaría de Minería de la Nación, Servicio Geológico Minero Argentino, Anales 29, Cap. 24, pp 760–778, Buenos AiresGoogle Scholar
  26. Cortés JM, Pasini, MM, Yamín G (2005a) Paleotectonic controls on the distribution of Quaternary deformation in Southern Precordillera, Central Andes (31°30′–33°SL). International Symposium on Andean Geodynamics, extended abstracts, pp 186–189, BarcelonaGoogle Scholar
  27. Cortés JM, Yamín MG, Pasini MM (2005b) La Precordillera Sur, Provincias de Mendoza y San Juan. 16° Congreso Geológico Argentino, La Plata. Actas 1:395–402Google Scholar
  28. Cortés JM, Casa A, Pasini MM, Yamín MG (2005c) Fajas de estructuras neotectónicas asociadas a rasgos paleotectónicos en Precordillera y Cordillera Frontal (31°30′–33°30′LS). 16° Congreso Geológico Argentino, La Plata. Actas 4:463–466Google Scholar
  29. Cortés JM, Casa A, Pasini MM, Yamín MG, Terrizzano CM (2006) Fajas oblicuas de deformación neotectónica en Precordillera y Cordillera Frontal (31°30′–33°30′LS). Controles paleotectónicos. Revista de la Asociación Geológica Argentina 61(4):639–646Google Scholar
  30. Costa C, Machette MN, Dart RL, Bastías E, Paredes ND, Perucca LP, Tello GE, Haller KM (2000) Map and database of Quaternary Faults and Folds in Argentina. United States geological survey open-file reports 00-108, 75 ppGoogle Scholar
  31. Costa CH, Audemard MFA, Bezerra FHR, Lavenu A, Machette MN, París G (2006) An overview of the main quaternary deformation of South America. Revista de la Asociación Geológica Argentina 61(4):461–479Google Scholar
  32. Crone AJ, Heller KM (1991) Segmentation and the coseismic behaviour of Basin and Range normal faults: examples from east-central Idaho and southwestern Montana. USA J Struct Geol 13:151–164CrossRefGoogle Scholar
  33. Demanet D, Pirard E, Renardy F, Jongmans D (2001a) Application and processing of geophysical images for mapping faults. Comput Geosci 27:1031–1037CrossRefGoogle Scholar
  34. Demanet D, Renardy F, Vanneste K, Jongmas D, Camelbeek T, Megharaoui M (2001b) The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics 66(1):78–89CrossRefGoogle Scholar
  35. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101:425–478CrossRefGoogle Scholar
  36. Donne DD, Piccardi L, Odum JK, Stephenson WJ, Williams RA (2007) High-resolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy). B Soc Geol Ital 126(3):326–331Google Scholar
  37. Esper Angillieri MY (2007) El aluvión del 13 de febrero de 1944 en la quebrada del Carrizal, departamento Iglesia, provincia de San Juan. Revista de la Asociación Geológica Argentina 62(2):283–288Google Scholar
  38. Fazzito SY (2011) Estudios geofísicos aplicados a la neotectónica de la falla El Tigre, Precordillera de San Juan. Tesis doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 260 ppGoogle Scholar
  39. Fazzito SY, Rapalini AE, Cortés JM (2006) Tomografía geoeléctrica en zonas de falla cuaternarias: dos ejemplos en la Precordillera centro-occidental de Mendoza. Revista de la Asociación Geológica Argentina, Serie D, Publicación especial Nº 9: 41–47Google Scholar
  40. Fazzito SY, Rapalini AE, Cortés JM, Terrizzano CM (2009) Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina. J S Am Earth Sci 28:217–228CrossRefGoogle Scholar
  41. Fernandez AE (1995) Seismic analysis, paleoclimatology and fluvial architecture of the Bermejo basin, Central Andes, Western Argentina. A dissertation presented to the Faculty of the Graduate School of Cornell University in Partial Fulfilment of the requirements for the Degree of Doctor of Philosophy, 279 ppGoogle Scholar
  42. Fleta J, Santanach P, Martinez P, Goula X, Grellet B, Masana E (2000) Geologic, geomorphologic and geophysic approaches for the paleoseismological analysis of the Amer fault (NE Spain). Workshop Proceedings of HAN2000: Evaluation of the potential for large earthquakes in regions of present day low seismic activity in Europe, Han-sur-Lesse, Belgium, pp 63–66Google Scholar
  43. Furque G (1963) Descripción Geológica de la Hoja 17b-Guandacol. Servicio Geológico Nacional, Boletín 92, Buenos Aires, 104 ppGoogle Scholar
  44. Gagliardo M, Caselli A, Limarino O, Colombo Piñol F, Tripaldi A (2001) Las unidades terciarias de la Cuenca Rodeo-Iglesia: validez y correlación de las unidades formacionales. Revista de la Asociación Geológica Argentina 56(1):121–125Google Scholar
  45. Giano SI, Lapenna V, Piscitelli S, Schiattarella M (2000) Electrical imaging and self-potential surveys to study the geological setting of the Quaternary slope deposits in the Agri high valley (Southern Italy), 2000. Ann Geofis 43(2):409–419Google Scholar
  46. Hanks T, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84 (B5):2348–2350Google Scholar
  47. INPRES (1977) Zonificación sísmica de la República Argentina. Instituto Nacional de Prevención Sísmica, Publicación Técnica nº 5, San Juan, 41 ppGoogle Scholar
  48. INPRES (1982) Microzonificación sísmica del valle de Tulúm, provincia de San Juan. Instituto Nacional de Prevención Sísmica. Resumen Ejecutivo, San JuanGoogle Scholar
  49. Isacks B, Barazangi M (1977) Geometry of Benioff zones: lateral segmentation and downwards bending of the subducted lithosphere. In: Talwani M, Pitman W (eds), Island Arcs, Deep Sea Trenches and Back Arc Basins American Geophysical Union, Ewing Series 1, pp 99–114Google Scholar
  50. Johnson AT, Jordan TE, Johnson NM, Naeser C (1987) Cronología y velocidad de sedimentación en una secuencia volcaniclástica, Rodeo, Prov. de San Juan, Rep. Argentina. 10° Congreso Geológico Argentino, Tucumán. Actas 2:87–90Google Scholar
  51. Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983a) Andean tectonics related to geometry of subducted Nazca plate. Geol Soc Am Bull 94(3):341–361CrossRefGoogle Scholar
  52. Jordan TE, Isacks B, Ramos VA, Allmendinger RW (1983b) Mountain building in the Central Andes. Episodes 3:20–26Google Scholar
  53. Jordan TE, Allmendinger RW, Damanti JF, Drake R (1993) Chronology of motion in a complete thrust belt: the Precordillera, 30–31°S, Andes Mountains. J Geol 101:135–156CrossRefGoogle Scholar
  54. Jordan T, Kelley S, Fernández A, Fernández Seveso F, Re G, Milana JP (1997) Relaciones entre las historias evolutivas de las cuencas de Iglesia y Bermejo, provincia de San Juan, Argentina. 2° Jornadas sobre Geología de Precordillera, San Juan. Actas 1:142–147Google Scholar
  55. Kay SM, Abbruzzi JM (1996) Magmatic evidence for Neogene lithospheric evolution of the Central Andean flat-slab between 30 and 32°S. Tectonophysics 259:15–28CrossRefGoogle Scholar
  56. Leveratto MA (1976) Edad de intrusitos cenozoicos en la Precordillera de San Juan y su implicancia estratigráfica. Revista de la Asociación geológica Argentina 31(1):53–58Google Scholar
  57. Loke MH (1996–2011) Tutorial: 2-D and 3-D electrical imaging surveys. Geotomo SoftwareGoogle Scholar
  58. Loke MH (2001) Rapid 2-D resistivity and IP inversion using the least-squares method. Geoelectrical Imaging 2-D and 3-D. Geotomo SoftwareGoogle Scholar
  59. Mann P, Hempton MR, Bradley DC, Burke K (1983) Development of pull-apart basins. J Geol 91(5):529–554CrossRefGoogle Scholar
  60. Nguyen F, Garambois S, Jongmans D, Pirard E, Loke MH (2005) Image processing of 2D resistivity data for imaging faults. J Appl Geophys 57(4):260–277CrossRefGoogle Scholar
  61. Nguyen F, Garambois S, Chardon D, Hermitte D, Bellier O, Jongmans D (2007) Subsurface electrical imaging of anisotropic formations affected by a slow active reverse fault, Provence, France. J Appl Geophys 62(4):338–353CrossRefGoogle Scholar
  62. Nivière B, Bruestle A, Bertrand G, Carretier S, Behrmann J, Gourry JC (2008) Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany). Quat Sci Rev 27:541–555CrossRefGoogle Scholar
  63. Ortiz A, Zambrano JJ (1981) La provincia geológica Precordillera Oriental. 8° Congreso Geológico Argentino, San Luis. Actas 3:59–74Google Scholar
  64. Pánek T, Tábořík P, Klimeš J, Komárková V, Hradecký J, Šťastný M (2011) Deep-seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians: evolutionary model based on kinematic analysis, electrical imaging and trenching. Geomorphology 129(1–2):92–112CrossRefGoogle Scholar
  65. Paredes JdeD (1990) Pampa del Jarillal, una cuenca trastensiva en la Precordillera de San Juan, Argentina. 11° Congreso Geológico Argentino, San Juan. Actas 2:427–429Google Scholar
  66. Pérez I, Costa C (2006). El sistema de fallamiento EL Tigre entre el río Jáchal y el cerro Negro de Iglesia (provincia de San Juan). 13° Reunión de Tectónica, San Luis. Abstracts 80Google Scholar
  67. Ramos VA, Cristallini EO, Pérez DJ (2002) The Pampean flat-slab of the Central Andes. J S Am Earth Sci 15(1):59–78CrossRefGoogle Scholar
  68. Re G (1994) Magnetoestratigrafía de la secuencia neogénica aflorante en arroyo Chaleta (Angualasto, San Juan), sus implicancias tectosedimentarias. 5° Jornadas Argentinas de Sedimentología, Tucumán. Abstracts, pp 205–209Google Scholar
  69. Re G, Barredo S (1993) Estudio magnetoestratigráfico y tasa de sedimentación del Grupo Iglesia en sus afloramientos aledaños a la localidad de Angualasto (Prov. de San Juan). 12° Congreso Geológico Argentino. Actas 2:148–155Google Scholar
  70. Re GH, Jordan TE, Kelley S (2003) Cronología y paleogeografía del Terciario de la Cuenca Intermontana de Iglesia septentrional, Andes de San Juan, Argentina. Revista de la Asociación Geológica Argent 58(1):31–48Google Scholar
  71. Rizzo E, Colella A, Lapenna V, Piscitelli S (2004) High-resolution images of the fault-controlled High Agri Valley basin (Southern Italy) with deep and shallow electrical resistivity tomographies. Phys Chem Earth 29:321–327CrossRefGoogle Scholar
  72. Siame LL (1998) Cosmonucléide produit in situ (10Be) et quantification de la déformation active dans les Andes centrales. Thèse de doctorat. Université de Paris-Sud, OrsayGoogle Scholar
  73. Siame LL, Sébrier M, Bellier O, Bourles DL, Castano JC, Araujo M, Yiou F, Raisbeck GM (1996) Segmentation and horizontal slip-rate estimation of the El Tigre Fault Zone, San Juan Province (Argentina) from SPOT images analysis. Third ISAG (St Malo, France), pp 239–241Google Scholar
  74. Siame LL, Bourles DL, Sébrier M, Bellier O, Castano JC, Araujo M, Perez M, Raisbeck GM, Yiou F (1997a) Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre Fault, Argentina. Geology 25(11):975–978CrossRefGoogle Scholar
  75. Siame LL, Sébrier M, Bellier O, Bourlès DL, Castano JC, Araujo M (1997b) Geometry, segmentation and displacement rates of the El Tigre Fault, San Juan Province (Argentina) from SPOT image analysis and 10Be datings. Annales Tectonicae 1(2):3–26Google Scholar
  76. Siame LL, Bellier O, Sebrier M (2006) Active tectonics in the Argentine Precordillera and western Sierras Pampeanas. Revista de la Asociación Geológica Argent 61(4):604–619Google Scholar
  77. Stewart IS, Hancock PL (1991) Scales of structural heterogeneity within neotectonic fault zones in the Aegean region. J Struct Geol 13:191–204CrossRefGoogle Scholar
  78. Storz H, Storz W, Jacobs F (2000) Electrical resistivity tomography to investigate geological structures of the earth’s upper crust. Geophys Prospect 48:455–471CrossRefGoogle Scholar
  79. Suzuki K, Toda S, Kusunoki K, Fujimitsu Y, Mogi T, Jomori A (2000) Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick quaternary. Eng Geol 56:29–45CrossRefGoogle Scholar
  80. Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  81. Terrizzano CM (2010) Neotectónica del extremo noroccidental del cinturón Barreal—Las Peñas, Precordillera Sur. Tesis doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 292 ppGoogle Scholar
  82. Terrizzano CM, Cortés JM, Fazzito SY, Rapalini AE (2008) Neotectonic transpressive zones in Precordillera Sur, Central Andes of Argentina: a structural and geophysical investigation. Neues Jahrb Geol P-A 253(1):103–114CrossRefGoogle Scholar
  83. Terrizzano CM, Fazzito SY, Cortés JM, Rapalini AE (2010) Studies of Quaternary deformation zones through geomorphic and geophysical evidence: a case in the Precordillera Sur. Central Andes of Argentina. Tectonophysics 490(3–4):184–194CrossRefGoogle Scholar
  84. Terrizzano CM, Fazzito SY, Cortés JM, Rapalini AE (2012) Electrical resistivity tomography applied to the study of neotectonic structures, northwestern Precordillera Sur, Central Andes of Argentina. J S Am Earth Sci 34:47–60CrossRefGoogle Scholar
  85. Vallejo MD (2004) Estudio geológico y geofísico del sector norte de Lomas del Inca, Barreal del Leoncito, San Juan. Trabajo final de Licenciatura. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresGoogle Scholar
  86. Verbeeck K, Beatse H, Vanneste K, Renardy F, Van Der Meer H, Roy-Chowdhury K, Camelbeeck T (2000) Geomorphic and geophysical reconnaissance of the Reppel and Bocholt faults, NE Belgium. Workshop proceedings of HAN2000: Evaluation of the potential for large earthquakes in regions of present day low seismic activity in Europe”, Han-sur-Lesse, Belgium, pp 167–170Google Scholar
  87. von Gosen W (1995) Polyphase structural evolution of the southwestern Argentine Precordillera. J S Am Earth Sci 8(3–4):377–404CrossRefGoogle Scholar
  88. Wang CY (2002) Detection of a recent earthquake fault by the shallow reflection seismic method. Geophysics 67(5):1465–1473CrossRefGoogle Scholar
  89. Weidmann R, Cardinal A, Simon W (1985) Propuesta de ordenamiento de la nomenclatura estratigráfica de las sedimentitas terciarias de la Precordillera sanjuanina. Primeras Jornadas sobre geología de Precordillera, San Juan, pp 342–347Google Scholar
  90. Wetten C (1975a) Geología del valle de Iglesia, su relación con los yacimientos de diatomita de Lomas del Campanario e importancia económica. Trabajo Final de Licenciatura. Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, 70 ppGoogle Scholar
  91. Wetten C (1975b) Estudio geológico económico de un yacimiento de diatomita y análisis de mercado. 2° Congreso Iberoamericano de Geología Económica. Actas 5:513–529Google Scholar
  92. Whitney RA (1990) Trenching of active faults in the San Juan Province of west-Central, Argentina. 11° Congreso Geológico Argentino, San Juan. Actas 2:445–446Google Scholar
  93. Wise DJ, Cassidy J, Locke CA (2003) Geophysical imaging of the Quaternary Wairoa North Fault, New Zealand: a case study. J Appl Geophys 53:1–16CrossRefGoogle Scholar
  94. Woodcock NH, Fischer M (1986) Strike-slip duplexes. J Struct Geol 25:725–735CrossRefGoogle Scholar
  95. Woodcock NH, Schubert C (1994) Continental strike-slip tectonics. In: Hancock PL (ed) Continental deformation. Pergamon Press, Oxford, pp 251–263Google Scholar
  96. Yamín MG (2007) Neotectónica del bloque Barreal, margen noroccidental de la Precordillera Sur. Tesis doctoral. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresGoogle Scholar
  97. Zapata TR, Allmendinger RW (1996) Thrust-front zone of the Precordillera, Argentina: a thick-skinned triangle zone. Am Assoc Petr Geol Bull 80:359–381Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sabrina Y. Fazzito
    • 1
    • 2
    Email author
  • José M. Cortés
    • 1
    • 2
  • Augusto E. Rapalini
    • 1
    • 2
  • Carla M. Terrizzano
    • 1
    • 2
  1. 1.Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas Y Naturales, Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires (IGEBA)Universidad de Buenos AiresBuenos AiresArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations