Skip to main content
Log in

The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitken JD (1967) Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of South Western Alberta. J Sediment Petrol 37(4):1163–1178

    Google Scholar 

  • Alonso Zarza AM, Calvo JP, García del Cura MA (1992) Palustrine sedimentation and associated features—grainification and pseudo-microkarst—in the Middle Miocene (Intermediate Unit) of the Madrid Basin, Spain. Sed Geol 76:43–61

    Article  Google Scholar 

  • Aparicio EP (1969) Contribución al conocimiento de la edad de los sedimentos del arroyo de Agua Negra, Departamento de Iglesia, San Juan, República Argentina. Revista Asociación Geológica Argentina 31(3):190–193

    Google Scholar 

  • Arenas C, Gutiérrez F, Osácar C, Sancho C (2000) Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro depression, NE Spain. Sedimentology 47:883–909

    Article  Google Scholar 

  • Burne RV, Moore LS (1987) Microbiolithes: organosedimentary deposits of the benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Busquets P, Colombo F, Heredia N, Solé de Porta N, Rodríguez Fernández LR, Álvarez Marrón J (2005) Age and tectonostratigraphic significance of the Upper Carboniferous series in the basement of the Andean Frontal Cordillera: geodynamic implications. Tectonophysics 399:181–194

    Article  Google Scholar 

  • Busquets P, Méndez-Bedia I, Colombo F, Césari S, Cardó R, Limarino O, Gallastegui G, Heredia N (2007a) Fossil tree in the Upper Palaeozoic of the Sierra de Castaño (Cordillera Frontal, Argentina): palaeoenvironmental importance. Cuadernos del Museo Geominero 8:63–67

    Google Scholar 

  • Busquets P, Méndez-Bédia I, Gallastegui G, Colombo F, Heredia N, Cardó R, Limarino O (2007b) Late Palaeozoic microbial lacustrine carbonate and related volcanic facies from the Andean Frontal Cordillera (San Juan, Argentina). Cuadernos del Museo Geominero 8:69–74

    Google Scholar 

  • Busquets P, Colombo F, Heredia N, Cardó R (2008) Gravitational sliding in a foreland basin. Late Palaeozoic, Cordillera Frontal, Andes, San Juan—Argentina. Geo-Temas 10:466

    Google Scholar 

  • Cabaleri NG, Armella C (2005) Influence of a biothermal belt on the lacustrine sedimentation of the Cañadon Asfalto Formation (Upper Jurassic, Chubut province, Southern Argentina). Geologica Acta 3(2):205–214

    Google Scholar 

  • Calvo JP, Alonso AM, García del Cura MA (1986) Depositional sedimentary controls on sepiolite occurrences in Paracuellos del Jarama, Madrid Basin. Geogaceta 1:25–28

    Google Scholar 

  • Calvo JP, Alonso AM, García del Cura MA (1989) Models of miocene marginal lacustrine sedimentation in response to varied depositional regimes and source areas in the Madrid Basin (Central Spain). Palaeogeogr Palaeoclimatol Palaeoecol 70:199–214

    Article  Google Scholar 

  • Calvo JP, Jones BF, Bustillo M, Fort R, Alonso-Zarza A, Kendall C (1995) Sedimentology and geochemistry of carbonates from lacustrine sequence in the Madrid Basin. Chem Geol 123:173–191

    Article  Google Scholar 

  • Césari SN, Busquets P, Colombo Piñol F, Méndez Bedia I, Limarino CO (2010) Nurse logs: an ecological strategy in a late Palaeozoic forest from the southern Andean region. Geology 38(4):295–298

    Article  Google Scholar 

  • Césari SN, Busquets P, Méndez-Bedia I, Colombo F, Limarino CO, Cardó R, Gallastegui G (2012) A late Palaeozoic fossil forest from the southern Andes, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology. doi:10.1016/j.palaeo.2012.03.015

    Google Scholar 

  • Channing A, Edwards D (2009) Silicification of higher plants in geothermally influenced wetlands: yellowstone as a Lower Devonian Rhynie analog. Palaios 24(8):505–521

    Article  Google Scholar 

  • Channing A, Wujek DE (2010) Preservation of protists within decaying plants from geothermally influenced wetlands of Yellowstone national park, Wyoming, United States. Palaios 25:347–355

    Article  Google Scholar 

  • Channing A, Edwards D, Sturtevant S (2004) A geothermally influenced wetland containing unconsolidated geochemical sediments. Can J Earth Sci 41:809–827

    Article  Google Scholar 

  • Dunagan SP, Driese SG (1999) Control of terrestrial stabilization on Late Devonian palustrine carbonate deposition: catskill magnafacies, New York, USA. J Sediment Res 69(3):772–783

    Article  Google Scholar 

  • Fisher RV (1961) Proposed classification of volcaniclastic sediments and rocks. Geol Soc Am Bull 80:1–8

    Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer, New York, pp 1–472

    Book  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin, pp 1–976

    Google Scholar 

  • Freytet P (1973) Petrography and paleo-environment of continental carbonate deposits with particular reference to the Upper Cretaceous and Lower Eocene of Languedoc (Southern France). Sed Geol 10:25–60

    Article  Google Scholar 

  • Freytet P, Plaziat JC (1982) Continental carbonate sedimentation and pedogenesis-late cretaceous and early tertiary of Southern France. Contrib Sedimentol 12:1–213

    Google Scholar 

  • Gerdes G, Claes M, Dunajtschik-Piewak K, Riege H, Krumbein EW, Reineck HE (1993) Contribution of Microbial Mats to Sedimentary Surface Structures. Facies 29:61–74

    Article  Google Scholar 

  • Gifkins C, Herrmann W, Large R (2005) Altered volcanic rocks. A guide to description and interpretation. Centre for ore deposit research. University of Tasmania, Australia, pp 1–272

    Google Scholar 

  • Groeber P (1938) Mineralogía y Geología. Espasa-Calpe Argentina, pp 1–492

  • Gutiérrez PR (1992) Microflora de la Formación Cerro Agua Negra (Carbonífero Superior-Pérmico Inferior) de la quebrada Las Leñas, provincia de San Juan, Argentina. 8º Simposio Argentino de Paleobotánica y Palinologia. Corrientes. Asociación Paleontológica Argentina. Publicación Especial 2:63–66

    Google Scholar 

  • Heredia N, Rodríguez Fernández LR, Gallastegui G, Busquets P, Colombo F (2002) Geological setting of the Argentine Frontal Cordillera in the flat-slab segment (30º00′ to 31º 30′ S latitude). In: Ramos V, McNulty B (eds.) Flat Subduction in the Andes. Journal South American Earth Sciences 15(13): 79–99

  • Heredia N, Farias P, García-Sansegundo J, Giambiagi L (2012) The basement of the Andean frontal cordillera in the Cordón del Plata (Mendoza, Argentina): geodynamic evolution. Andean Geol 39(2):242–257

    Google Scholar 

  • Jones B, Renault RW, Rosen MR, Klyen L (1998) Primary siliceous rhizoliths from loop road hot springs, North Island, New Zealand. J Sediment Res 68:115–123

    Article  Google Scholar 

  • Kalkowsky E (1908) Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift der Deutschen geologischen Gesellschaft 60:68–125

    Google Scholar 

  • Kennard JM (1994) Thrombolites and Stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Amadeus Basin, Central Australia. In: Bertrand-Sarfati J, Monty C (eds) Phanerozoic Stromatolites II, pp 443–471

  • Kennard JM, James NP (1986) Thrombolites and Stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Kostka JE, Wu J, Nealson KH, Stucki JW (1999) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica Acta 63(22):3705–3713

    Article  Google Scholar 

  • Llambías EJ, Kleiman LE, Salvarredi JA (1993) El magmatismo gondwánico. 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos. In: Ramos V (ed) Geología y Recursos Naturales de Mendoza, Relatorio1, 53–64

  • Machel HG (2001) Bacterial and thermochemical sulphate reduction in diagenetic setting-old and new insights. Sed Geol 140:143–175

    Article  Google Scholar 

  • Mazzullo SJ, Birdwell BA (1989) Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings. J Sediment Petrol 39(4):605–611

    Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic textures. A guide to the interpretation of textures in volcanic rocks. Centre for ore deposit and exploration studies. University of Tasmania, Australia, pp 1–197

    Google Scholar 

  • Platt NH (1989) Lacustrine carbonates and pedogenesis: sedimentology and origin of palustrine deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N. Spain. Sedimentology 36:665–684

    Article  Google Scholar 

  • Platt NH, Wright VP (1991) Lacustrine carbonates: facies models, facies distributions and hydrocarbon aspects. Spec Publs Int Ass Sediment 13:57–74

    Google Scholar 

  • Platt NH, Wright VP (1992) Palustrine carbonates and the Florida everglades: towards an exposure index for fresh-water environment? J Sediment Petrol 62(6):1058–1071

    Google Scholar 

  • Polanski J (1970) Carbónico y Pérmico en la Argentina. Eudeba, Buenos Aires, pp 1–216

    Google Scholar 

  • Ramos VA, Jordan TA, Allmendinger RW, Kay SM, Cortes JM, Palma MA (1984) Chilenia: un terreno alóctono en la evolución Paleozoica de los Andes Centrales. Actas IX Congreso Geológico Argentino 2:84–106

    Google Scholar 

  • Ramos VA, Jordan TA, Allmendinger RW, Mpodozis S, Kay SM, Cortés JM, Palma MA (1986) Palaeozoic Terranes of the Central Argentine—Chilean Andes. Tectonics 5:855–880

    Article  Google Scholar 

  • Ramos E, Ll Cabrera, Hagemann HW, Pickel W, Zamarreño I (2001) Paleogene lacustrine record in Mallorca (NW Mediterranean, Spain): depositional, palaeogeographic and palaeoclimatic implications for the ancient south-eastern Iberian margin. Palaeogeogr Palaeoclimatol Palaeoecol 172:1–37

    Article  Google Scholar 

  • Riding R (1999) The term stromatolites: towards an essentials definition. Lethaia 32(4):321–330

    Article  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(Suppl. 1):179–214

    Article  Google Scholar 

  • Riding R, Braga JC, Martin JM (1991) Oolite stromatolites and thrombolites, Miocene, Spain: analogues of recent giant Bahamian examples. Sed Geol 71:121–127

    Article  Google Scholar 

  • Roberts JA (2004) Inhibition and enhancement of microbial surface colonization: the role of silicate composition. Chem Geol 212(3–4):313–327

    Article  Google Scholar 

  • Rocha-Campos AC, Basei MA, Nutman AP, Kleiman LE, Varela R, Llambías E, Canile FM, da Rosa O de CR (2011) 30 million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: sHRIMP U-Pb zircon geochronology evidence. Gondwana Res 19(2):509–523

    Article  Google Scholar 

  • Rodríguez Fernández LR, Heredia N, Marín G, Quesada C, Robador A, Ragona D, Cardó R (1996) Tectonoestratigrafía y estructura de los Andes Argentinos entre los 30° y 31° de latitud Sur. 12 Congreso Geológico Argentino Actas 2:111–124

    Google Scholar 

  • Rodríguez Fernández LR, Heredia N, García Espina G, Cegarra MI (1997) Estratigrafía y estructura de los Andes centrales Argentinos entre los 30° 30′ y 31° 00′ de latitud Sur. Acta Geológica Hispánica 32(1–2):51–76

    Google Scholar 

  • Rogers JR, Bennett PC (2004) Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates. Chem Geol 203(1–2):91–108

    Article  Google Scholar 

  • Sanz-Montero ME, Rodríguez-Aranda JP, Pérez-Soba C (2009) Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite precipitating environment of a Miocene lacustrine system. Eur J Mineral 21:163–175

    Article  Google Scholar 

  • Sato MA, Llambías EJ (1993) El grupo Choiyoi, provincia de San Juan: equivalente efusivo del Batolito de Colangüil. 12º Congreso Geológico Argentino y 2º Congreso de Exploración de Hidrocarburos. Actas 4:156–165

    Google Scholar 

  • Silva Nieto DG, Cabaleri NG, Salani FM, Coluccia A (2002) Cañadón Asfalto, una cuenca tipo “pull apart” en el área de cerro Cóndor, provincia de Chubut. In: Cabalero N, Cingolani CA, Linares E, López de Luchi MG, Ostera HA, Panarello H (eds), XV Congreso Geológico Argentino, El Calafate, Acta I, pp 238–244

  • Szulc J, Cwizewicz M (1989) The Lower Permian freshwater carbonates of the Slawkow Graben, Southern Poland: sedimentary facies context and stable isotope study. Palaeogeogr Palaeoclimatol Palaeoecol 70:107–120

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific, Oxford, pp 1–482

    Book  Google Scholar 

  • Valero Garcés BL, Gierlowski-Kordesch E, Bragonier WA (1994) Lacustrine facies model for non-marine limestone within cyclothems in the Pennsylvanian (Upper Freeport Formation, Appalachian basin) and its implications. In: Lomando AJ, Schreiber BC, Harris PM (eds) Lacustrine reservoirs and depositional systems. Society. Econo. Paleontol. Mineral. (SEPM). Core Workshop 19, pp 321–381

  • Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Wright VP (1990a) Syngenetic formation of grainstones and pisolites from fenestral carbonates in peritidal settings. J Sediment Petrol 60(2):309–310

    Article  Google Scholar 

  • Wright VP (1990b) Lacustrine carbonates. In: Tucker M, Wright VP (eds) Carbonate sedimentology. Blackwell, Oxford, pp 164–189

    Google Scholar 

Download references

Acknowledgments

We would like to thank Andrés Cuesta, Luis Pedro Fernández, Luis González-Menéndez, Andrés Pérez-Estaún and Álvaro Rubio for their suggestions and comments. Technical support was provided by the Scientific and Technological Centers of the Barcelona University (CCiT-UB). Financial support was provided by I + D+I Spanish Programmes, projects CGL2006-12415-C03 “PaleoAndes”, CGL2009-13706-C03 “PaleoAndes II”, “Consolider-Ingenio” 2010 Programme, under project CSD2006-0041, “Topo-Iberia” and “Grup de Qualitat 2009-SGR-1198, Generalitat de Catalunya”, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Busquets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busquets, P., Méndez-Bedia, I., Gallastegui, G. et al. The relationship between carbonate facies, volcanic rocks and plant remains in a late Palaeozoic lacustrine system (San Ignacio Fm, Frontal Cordillera, San Juan province, Argentina). Int J Earth Sci (Geol Rundsch) 102, 1271–1287 (2013). https://doi.org/10.1007/s00531-013-0870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0870-z

Keywords

Navigation