Skip to main content
Log in

Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–rock interaction, and geochemical characteristics

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Comparative volcanological, mineralogical, petrological, and geochemical studies of blocks of Triassic submarine basalt occurrences hosted by the Jurassic mélange have been carried out. The studied localities are located in displaced parts of the Dinarides in NE-Hungary (Darnó Unit), in the Dinarides (Kalnik Mts., Croatia and Vareš-Smreka, Bosnia and Herzegovina), and in the Hellenides (Stragopetra, Greece). The common characteristic of the studied occurrences is the well observable result of the lava–water-saturated sediment mingling, i.e., the presence of the so-called carbonate peperitic facies. Mixing of the basaltic lava with pelagic lime mud (representing the unconsolidated stage of the red, micritic limestone), as well as fluid inclusion and chlorite thermometry data support that the carbonate peperite was formed above CCD and at the Bosnian locality, a shallower water, about 1.4 km depth is proven. The igneous rocks show mainly within-plate basalt geochemical characteristics; MORB signatures are not common. Low temperature (<200°C) hydrothermal alteration is characteristic to the pillow basalt blocks with peperitic facies. The similarities in the volcanological, geochemical, and textural characteristics observed at the different localities support a strong genetic connection among them. The results of this study suggest to the advanced rifting stage origin of the Triassic basaltic suits and their distinction from the true oceanic basalt pillow units of the Dinarides can be based on the occurrences of the peperite facies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Peperite (definition): a genetic term applied to a rock formed essentially in situ by disintegration of magma intruding and mingling with unconsolidated or poorly consolidated, typically wet sediments. The term also refers to similar mixtures generated by the same processes operating at the contacts of lavas and other hot volcaniclastic deposits with such sediments (White et al. 2000).

Abbreviations

Bas:

Basalt

BM:

Biomold

Cc:

Calcite

Chl:

Chlorite

G:

Glass

Hem:

Hematite

L:

Limestone

Pl:

Plagioclase

Pr:

Prehnite

Ps:

Pseudomorph after earlier mafic mineral

Px:

Pyroxene

R:

Radiolarite

References

  • Bakker RJ (2003) Package FLUIDS 1. New computer programs for the analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Balla Z (1987) A Bükk-hegység mezozoós tektonikája és kapcsolata a Nyugati-Kárpátokkal és a Dinaridákkal (Tectonics of the Bükkian (North Hungary) Mesozoic and relations to the West Carpathians and Dinarides), Ált Földt Sz, 22:13–54 (in Hungarian)

  • Balla Z, Baksa Cs, Földessy J, Havas L, Szabó I (1980) The tectonic setting of the ophiolites in the Bükk mountains (North Hungary). Geol Carpath 31(4):465–493

    Google Scholar 

  • Borojević S, Palinkaš LA, Bermanec V (2000) Fluid inclusions in Pillow Lavas of Hruškovec, Mt. Kalnik, 2. In: Proceedings of the Croatian Geological Congress, pp 123–125

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Buda Gy, Kiss J (1980) Comparison some chromite and titaniferous magnetite, ilmenite ore bearing ultrabasic-basic complexes. UNESCO Int Symp Athens 1:21–45

    Google Scholar 

  • Cann JR (1974) A model for ocean crustal structure developed. Geophysic J Royal Astron Soc 39:169–187

    Article  Google Scholar 

  • Cathelineau M, Izquierdo G (1988) Temperature—composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contrib Mineral Petrol 100(4):418–428

    Article  Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Palaeogeogr Palaeoclimat Palaeoecol 210:1–56

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sbortshikov IM, Geyssant J, Lepvrier C, Pechersky DH, Boulin J, Sibuet JC, Savostin LA, Sorokhtin O, Westphal M, Bazhenov ML, Lauer JP, Biju-Duval B (1986) Geological evolution of the Tethys belt from the Atlantic to the Pamirs since the Lias. Tectonophysics 123:241–315

    Article  Google Scholar 

  • Dimitrijević MN, Dimitrijević MD, Karamata S, Sudar M, Gerzina N, Kovács S, Dosztály L, Gulácsi Z, Less Gy, Pelikán P (2003) Olistostrome/mélanges—an overview of the problems and preliminary comparison of such formations in Yugoslavia and NE Hungary. Slovak Geol Mag 9(1):3–21

    Google Scholar 

  • Dosztály L, Józsa S (1992) Geochronological evaluation of Mesosoic formations of Darnó Hill at Recsk on the basis of radiolarians and K-Ar age data. Acta Geol Hung 35(4):371–393

    Google Scholar 

  • Downes H, Pantó Gy, Árkai P, Thirlwall MF (1990) Petrology and geochemistry of Mesozoic igneous rocks, Bükk Mountains, Hungary. Lithos 24(3):201–215

    Article  Google Scholar 

  • Duffield WA (1979) Significance of contrasting vesicularity in basalt from DSDP sites 407, 408, and 409 on the west flank of the Reykjanes Ridge, DSDP Initial Reports, doi:10.2973/dsdp.proc.49.125.1979

  • Garrison RE (1972) Inter- and intrapillow limestones of the Olympic Peninsula, Washnigton. J Geol 80(3):310–322

    Article  Google Scholar 

  • Gawlick HJ, Kovács S, Haas J, Missioni S, Suzuki H, Ozsvárt P, Kiss G (2010) Middle Triassic and middle jurassic radiolarians from the Darnó ophiolitic mélange (NE Hungary) as northern-most part of the coherent north-south trending Neotethyan ophiolite belt. Centr Eur Geol (in press)

  • Goto Y, McPhie J (1998) Endogenous growth of a Miocene submarine dacite cryptodome, Rebun Island, Hokkaido, Japan. J Volc Geotherm Res 84(3–4):273–286

    Article  Google Scholar 

  • Goto Y, McPhie J (2004) Morphology and propagation styles of Miocene submarine basanite lavas at Stanley, northwestern Tasmania, Australia. J Volt Geotherm Res 130(3–4):307–328

    Article  Google Scholar 

  • Goto Y, Tsuchiya N (2004) Morphology and growth style of a Miocene submarine dacite lava dome at Atsumi, northeast Japan. J Volc Geotherm Res 134(4):255–275

    Article  Google Scholar 

  • Haas J, Kovács S (2001) The Dinaric-Alpine connection—as seen from Hungary. Acta Geol Hung 44(2–3):345–362

    Google Scholar 

  • Haas J, Görög Á, Kovács S, Ozsvárt P, Matyók I, Pelikán P (2006) Displaced Jurassic foreslope and basin deposits of Dinaric origin in Northeast Hungary. Acta Geol Hung 49(2):125–163

    Article  Google Scholar 

  • Harangi Sz, Szabó Cs, Józsa S, Szoldán Zs, Árva-Sós E, Balla M, Kubovics I (1996) Mesozoic igneous suites in Hungary: implications for genesis and tectonic settings in the Northwestern part of tethys. Int Geol Rev 38:336–360

    Article  Google Scholar 

  • Hart RA (1972) A model for chemical exchange in the basalt-seawater system of oceanic layer II. Can J Earth Sci 10:799–816

    Article  Google Scholar 

  • Hopson CA, Mattinson JM, Pessagno EA, Luyendyk BP (2008) California coast range ophiolite: composite middle and late jurassic oceanic lithosphere. In: Wright JE, Shervais JW (ed.) Ophiolites, arcs and batholits: a tribute to Cliff Hopson. The Geol Soc of Am Spec Paper 438:1–102

  • Janousek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing geochemical data toolkit (GCDkit). J Petrol 47(6):1255–1259

    Article  Google Scholar 

  • Jones JG (1969) Pillow lavas as depth indicators. Am J Sci 267:181–195

    Article  Google Scholar 

  • Jones G, Robertson AHF (1991) Tectono-stratigraphy and evolution of the Pindos ophiolite and associated units. J Geol Soc London 148:267–268

    Article  Google Scholar 

  • Józsa S (1999) A darnó-hegyi óceánaljzati magmás kőzetek petrológiai-geokémiai vizsgálata, PhD dissertation (Petrological and geochemical analysis of the submarine igneous rocks of the Darnó Hill), Eötvös Loránd University (in Hungarian with English abstract)

  • Karamata S (2000) Mineralization related to the Triassic rifting in the Borovica-Vareš-Čevljanovići-Kalinovik zone (Bosnia). Acta Geol Hung 43(1):15–23

    Google Scholar 

  • Karamata S (2006) The geological development of the Balkan Peninsula related to the approach, collision and compression of Gondwana and Eurasian units. In: Robertson AHF, Mountrakis D (ed) Tectonic development of the Eastern Mediterranean Region, Geol Soc London, Spec Publ, 260:155–178

  • Karamata S, Knežević V, Cvetković V (2000) Petrology of the Triassic basaltoid rocks of Vareš (Central Bosnia). Acta Geol Hung 43(1):1–14

    Google Scholar 

  • Kiss G (2008) A Darnó Egység mezozoos szubmarin vulkanizmusa és hidrotermás folyamatai, valamint ezek dinári kapcsolatai, master thesis (Mezozoic submarine volcanism of the Darnó Unit and its relationship to some Dinaridic and Hellenidic occurrences), Eötvös Loránd University, Budapest, p 186 (in Hungarian, with English abstract)

  • Kiss G, Molnár F, Palinkaš LA (2008) Volcanic facies and hydrothermal processes in Triassic pillow basalts from the Darnó Unit, NE Hungary. Geol Croat 61(2–3):385–394

    Google Scholar 

  • Kovács S, Haas J, Szebényi G, Gulácsi Z, Pelikán P, B.-Árgyelán G, Józsa S, Görög Á, Ozsvárt P, Gecse Zs, Szabó I (2008) Permo-Mesozoic formations of the Recsk-Darnó Hill area: stratigraphy and structure of the pre-tertiary basement of the paleogene Recsk orefield. In: Földessy J, Hartai É (ed) Recsk and Lahóca geology of the paleogene ore complex, geosciences, Publications of the University of Miskolc, Series A, Mining 73:33–56

  • Kovács S, Haas J, Ozsvárt P, Palinkaš LA, Kiss G, Molnár F, Józsa S, Kövér Sz (2010) Reassessment of the Mesozoic complexes of Darnó Hill (NE Hungary) and comparisons with Neotethyan accretionary compleyes of the Dinarides and Hellenides—preliminary data. Centr Eur Geol (in press)

  • Kubovics I (1984) On the petrogenesis of the North Hungarian basic-ultrabasic magmatic rocks. Acta Geol Hung 27(1–2):163–189

    Google Scholar 

  • Less Gy, Mello J, Elečko M, Kovács S, Pelikán P, Pentelényi L, Peregi Zs, Pristaš J, Radócz Gy, Szentpétery I, Vass D, Vozár J, Vozárová A (2004) Geological map of the Gemer-Bükk area 1:100000, Hungarian Gelogical Institute, Hungary

  • MacDonald JH, Harper GD, Miller RB, Mlinarevic AN, Miller BV (2008) Geochemistry and geology of the Iron mountain unit, ingalls ophiolite complex, Washington: evidence for the polygenetic nature of the Ingalls complex, In: Wright JE, Shervais JW (ed) Ophiolites, Arcs and batholits: a tribute to Cliff Hopson. Geol Soc Am Spec Paper 438:161–174

  • Meschede M (1986) A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chem Geol 56:207–218

    Article  Google Scholar 

  • Migiros G, Tselepidis V (1990): Der erste Nachweis von Hallstatter Kalken in der North-Pindos-Decke (NW-Griechenland), N Jb Geol Paleont 1990/4:248–256 (in German)

  • Moore JG (1970) Water content of basalt erupted on the ocean floor. Contributions mineral petrol 28:272–279

    Article  Google Scholar 

  • Nehlig P (1991) Salinity of oceanic hydrothermal fluids: a fluid inclusion study. Earth Plan Sci Let 102:310–325

    Article  Google Scholar 

  • Németh K (1999) A vízalatti vulkanizmus jelenségei és üledékkződési folyamatai, kapcsolatai a szárazföldi vulkáni folyamatokkal: áttekintés (Subaqueous volcanism and their depositional processes, their relationship to subaerial volcanism: review). Földt Közl 129(3):419–443

    Google Scholar 

  • Palinkaš AL, Bermanec V, Vrkljan M, Međimorec S (1998) Pillow lavas of Hruškovec, North Croatia, Rifting magmatism or dismembered ophiolitic sequence—IGCP-369, Subp. 2, Final Session, Prague, pp 84–85

  • Palinkaš AL, Kolar-Jurkovšek T, Borojević S, Bermanec V (2000) Triassic rifting magmatism within Zagorje-Mid-Transdanubian zone, examplified by pillow lavas of Hruškovec, Mt.Kalnik, N.Croatia, PANCARDI 2000 meeting. Geološke vijesti 37:98–99

    Google Scholar 

  • Palinkaš AL, Bermanec V, Borojević Šoštarić S, Kolar Jurkovšek T, Strmić Palinkaš S, Molnár F, Kniewald G (2008) Volcanic facies analysis of a subaqueous basalt lava-flow complex at Hruškovec, NW Croatia-evidence of advanced rifting in the Tethyan domain. J Volc Geotherm Res 178:644–656

    Article  Google Scholar 

  • Pamić J (1984) Triassic magmatism of the Dinarides in Yugoslavia. Tectonophysics 109(3–4):273–277

    Google Scholar 

  • Pamić J (1997) The northwesternmost outcrops of the Dinaridic ophiolites: A case study of Mt. Kalnik (North Croatia). Acta Geol Hung 40(1):37–56

    Google Scholar 

  • Pamić J, Tomljenović B (1998) Basic geological data from the Croatian part of the Zagorje-Mid-Transdanubian zone. Acta Geol Hung 41(4):389–400

    Google Scholar 

  • Pamić J, Gušić I, Jelaska V (1998) Geodynamic evolution of the central Dinarides. Tectonophysics 297:251–268

    Article  Google Scholar 

  • Pamić J, Tomljenović B, Balen D (2002) Geodynamic and petrogenetic evolution of alpine ophiolites from the central and NW Dinarides: an overview. Lithos 65:113–142

    Article  Google Scholar 

  • Pearce JA (1983) Role of sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing, Cheshire, pp 230–249

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47

    Article  Google Scholar 

  • Potter RW, Clynne MA, Brown DL (1978) Freezing point depression of aqueous sodium chloride solutions. Econ Geol 73:284–285

    Article  Google Scholar 

  • Rassios A, Grivas E (1999) Geologic and metallogenic map of the pindos imbricated ophiolite and associated units (12 pc. of 1:20 000 sheets, about 1000 sq km). Institute of Geology and Mineral Exploration, Athens

  • Rassios A, Moores E (2006) Heterogeneous mantle complex, crustal processes and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece). In: Robertson AHF, Mountrakis D (eds) Tectonic development of the Eastern Mediterranean Region, Geological Society, London, Spec Publ 260:237–266

  • Robertson AHF (2002) Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region. Lithos 66(1–2):1–67

    Article  Google Scholar 

  • Robertson AHF, Karamata S, Šarić K (2009) Overview of ophiolites and related units in the Late Palaeozoic–Early Cenozoic magmatic and tectonic development of Tethys in the northern part of the Balkan region. Lithos 108:1–36

    Article  Google Scholar 

  • Schlager W (1967) Hallstätter und Dachsteinkalk–Fazies am Gosaukamme und der Vorstellung ortsgebundener Hallstätter Zonen in den Ostalpen. Verh Geol B-A 1(2):50–70

    Google Scholar 

  • Schmid MS, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101(1):139–183

    Article  Google Scholar 

  • Skilling IP, White JDL, McPhie J (2002) Peperite: a review of magma-sediment mingling. J Volc Geotherm Res 117:1–17

    Article  Google Scholar 

  • Smith AG (2006) Tethyan ophiolite emplacement, Africa to Europe motions and Atlantic spreading, In: Robertson AHF, Mountrakis D (ed) Tectonic development of the Eastern Mediterranean Region, Geol Soc London, Spec Publ 260:11–34

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle compositions and processes. In: Norry MJ (ed) Saunders AD. Magmatism in the ocean basins, Geol Soc Lond, pp 313–345

    Google Scholar 

  • Tjeerd Van Andel (1975) Mesoszoic/cenozioc calcite compensation depth and the global distribution of calcareous sediments. Earth Planet Sci Lett 26(2):187–194

    Article  Google Scholar 

  • Trubelja F, Burgath K-P, Marchig V (2004) Triassic magmatism in the area of the central Dinarides (Bosnia and Herzegovina): geochemical resolving of tectonic setting. Geol Croat 57(2):159–170

    Google Scholar 

  • White JDL, McPhie J, Skilling I (2000) Peperite: a useful genetic term. Bull Volc 62:65–66

    Article  Google Scholar 

  • Zane A, Weiss Z (1998) A procedure for classifying rock-forming chlorites based on microprobe data. Rend Fis Acc Lincei, serie 9 9:51–56

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Hungarian-Croatian Science and Technology Agreement Project no. 07/CRO to F. Molnár and L. A. Palinkaš and the OTKA (HNSF) no. T 49633 and the HAESF Senior Fellowship to F. Molnár. A. Robertson is kindly thanked for field discussions about the Avdella Mélange in the Pindos Mts. and for his reviewing comments. The authors are grateful toward S. Borojević for discussion about fluid inclusion data from Hruškovec. Constructive suggestions and comments from K. Németh reviewer highly improved the original version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Kiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiss, G., Molnár, F., Palinkaš, L.A. et al. Correlation of Triassic advanced rifting-related Neotethyan submarine basaltic volcanism of the Darnó Unit (NE-Hungary) with some Dinaridic and Hellenidic occurrences on the basis of volcanological, fluid–rock interaction, and geochemical characteristics. Int J Earth Sci (Geol Rundsch) 101, 1503–1521 (2012). https://doi.org/10.1007/s00531-011-0706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0706-7

Keywords

Navigation