Skip to main content
Log in

Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: new constrains from SIMS U–Pb zircon age

  • Short Note
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Zircon grains separated from 2 granulites from the eastern Himalaya were investigated by Raman spectroscopy, cathodoluminescence imaging, and secondary ion mass spectrometry. These grains have a thin homogeneous rim and an oscillatory inner zone domain with or without a relict inherited core. Garnet, kyanite, and rutile inclusions were identified within only the rim domain of zircon grains, indicating that the rim had formed during peak granulite-facies metamorphism. U–Pb zircon data record three distinct age populations: 1,805 Ma (for the inherited core), ca. 500 Ma (oscillatory inner zone), as well as 24–25 Ma and ca. 18 Ma (for the metamorphic rim). These new precision ages suggest that the peak metamorphic age for the HP granulite is at ca. 24–25 Ma, and subsequent amphibolite-facies retrograde metamorphism occurred at ca. 18 Ma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Ahmad T, Harris N, Bickle M, Chapman H, Bunbury J, Prince C (2000) Isotopic constraints on the structural relationships between the lesser Himalayan series and high Himalayan crystalline series, Garhwal Himalaya. GSA Bull 112:467–477

    Article  Google Scholar 

  • Ali JR, Aitchinson JC (2005) Greater India. Earth Sci Rev 72:169–188

    Article  Google Scholar 

  • Argles TW, Prince CI, Foster GL, Vance D (1999) New garnets for old? Cautionary tales from young mountain belts. Earth Planet Sci Lett 172:301–309

    Article  Google Scholar 

  • Bianchini G, Beccaluva L, Siena F, Tiepolo M (2009) Subduction and crust recycling; petrological evidence and U–Pb dating in mantle xenoliths from the Betic area (Spain). Geochim Cosmochim Acta 73(13S):A119

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu Y, Idleman B, Hren M, Chamberlain CP (2004) U–Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa area. Am J Sci 304:889–929

    Article  Google Scholar 

  • Booth AL, Chamberlain CP, Kidd WSF, Zeitler PK (2009) Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geol Soc Am Bull 121:385–407

    Article  Google Scholar 

  • Brookfield ME (1993) The Himalayan passive margin from Precambrian to Cretaceous. Sed Geol 84:1–35

    Article  Google Scholar 

  • Burg JP, Chen GM (1984) Tectonics and structural formation of southern Tibet, China. Nature 311:219–223

    Article  Google Scholar 

  • Burg JP, Davy P, Nievergelt P, Oberli F, Seward D, Diao Z, Meier M (1997) Exhumation during crustal folding in the Namche Barwa syntaxis. Terra Nova 9:53–56

    Article  Google Scholar 

  • Burg JP, Nievergelt P, Oberli F, Seward D, Davy P, Maurin JC, Diao Z, Meier M (1998) The Namche-Barwa syntaxis: evidence for exhumation related to compressional crustal folding. J Asian Earth Sci 16:239–252

    Article  Google Scholar 

  • Catlos EJ, Harrison TM, Manning CE, Grove M, Rai SM, Hubbard MS, Upreti BN (2002) Records of the evolution of the Himalayan orogen from in situ Th–Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci 20:459–479

    Article  Google Scholar 

  • Copeland P, Harrison TM, Yun P, Kidd WSF, Roden M, Zhang Y (1995) Thermal evolution of the Gangdese Batholith, southern Tibet: a history of episodic unroofing. Tectonics 14:223–236

    Article  Google Scholar 

  • Cottle JM, Searle MP, Horstwood MSA, Waters DJ (2009) Timing of midcrustal metamorphism, melting, and deformation in the Mount Everest Region of southern Tibet revealed by U(–Th)–Pb geochronology. J Geol 117:643–664

    Article  Google Scholar 

  • de Sigoyer J, Chavagnac V, Blichert-Toft J, Villa IM, Luais B, Guillot S, Cosca M, Mascle G (2000) Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: multichronology of the Tso Morari eclogites. Geology 28:487–490

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, Ojha TP (1998) Eocene-early Miocene foreland basin development and the history of Himalayan thrusting, western and central Nepal. Tectonics 17:741–765

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Quade J, LaReau B, Spurlin M (2000) Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. Science 288:497–499

    Article  Google Scholar 

  • DeCelles PG, Gehrels GE, Najman Y, Martin AJ, Carter A, Garzanti E (2004) Detrital geochronology and geochemistry of Cretaceous—Early Miocene strata of Nepal: implication for timing and diachroneity of initial Himalayan orogenesis. Earth Planet Sci Lett 227:313–330

    Article  Google Scholar 

  • Dewey JF, Bird JM (1970) Mountain belts and new global tectonics. J Geophys Res 75:2625–2685

    Article  Google Scholar 

  • Dewey JF, Burke K (1973) Tibetan, Variscan and Precambrian basement reactivation: products of continental collision. J Geol 81:683–692

    Article  Google Scholar 

  • Ding L, Zhong DL (1999) Metamorphic characteristics and geotectonic implications of the high-pressure granulites from Namjagbarwa, eastern Tibet. Sci China (Ser D) 42:491–505

    Article  Google Scholar 

  • Ding L, Zhong DL, Yin A, Kapp P, Harrison TM (2001) Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett 192:423–438

    Article  Google Scholar 

  • Frank W, Grasemann B, Guntli P, Miller C (1995) Geological map of the Kishwar–Chamba–Kulu region (NW Himalayas India). Jahrbuch der Geologischen Bundesanstalt 138:299–308

    Google Scholar 

  • Gansser A (1964) The geology of the Himalayas. Wiley Interscience, New York, pp 1–289

    Google Scholar 

  • Gehrels GE, DeCelles PG, Martin A, Ojha TP, Pinhassi G, Upreti BN (2003) Initiation of the Himalayan orogen as an early Paleozoic thin-shinned thrust belt. GSA Today 13:4–9

    Article  Google Scholar 

  • Geng Q, Pang G, Zheng L, Chen Z, Fisher RD, Sun Z, Ou C, Dong H, Wang X, Li S, Lou X, Fu H (2006) The eastern Himalayan syntaxis: major tectonic domains, ophiolitic mélanges, and geological evolution. J Asian Earth Sci 27:265–285

    Article  Google Scholar 

  • Godin L, Parrish RR, Brown RL, Hodges KV (2001) Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U–Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20:729–747

    Article  Google Scholar 

  • Guillot S, Replumaz A, Hattori KH, Strzerzynski P (2007) Initial geometry of western Himalaya and ultra high pressure metamorphic evolution. J Asian Earth Sci 30:557–564

    Article  Google Scholar 

  • Guillot S, Maheo G, de Sigoyer J, Hattori KH, Pecher A (2008) Tethan and Indian subduction viewed from the Himalayan high- to ultrahigh-pressure metamorphic rocks. Tectonophysics 451:225–241

    Article  Google Scholar 

  • Harrison TM, Yin A, Grove M, Lovera OM, Ryerson FJ, Xinhua Z (2000) The Zedong window: a record of superposed tertiary convergence in southeastern Tibet. J Geophys Res 105:19211–19230

    Article  Google Scholar 

  • Heim A, Gansser A (1939) Central Himalaya geological observations of Swiss, pp 1–246

  • Indares AD (2003) Metamorphic textures and P–T evolution of high-P granulites from the Lelukuau terrane, NE Grenville Province. J Metamorph Geol 21:35–48

    Article  Google Scholar 

  • Kaneko Y, Katayama I, Yamamoto H et al (2003) Timing of Himalayan ultrahigh pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia. J Metamorph Geol 21:589–599

    Article  Google Scholar 

  • Lange U, Bröcker M, Armstrong R, Trapp E, Mezger K (2005) Sm–Nd and U–Pb dating of highpressure granulites from the Zote and Rychleby Mts. (Bohemian Massif, Poland and Czech Republic). J Metamorph Geol 23:133–145

    Article  Google Scholar 

  • Lawrence RD, Khan SH, Dejong KA, Farah A, Yeats RS (1981) Thrust and strike slip fault interaction along the Chaman transform zone, Pakistan. In: McClay KR, Price NJ (ed) Thrust and nappe tectonics. Geol Soc Lond Spec Publ, vol 9, pp 363–370

  • Leech ML, Singh S, Jain AK, Klemperer SL, Manickavasagam RM (2005) The onset of India-Asia continental collision: early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet Sci Lett 234:83–97

    Article  Google Scholar 

  • LeFort P (1975) Himalayas—collided range—present knowledge of continental arc. Am J Sci A275:1–44

    Google Scholar 

  • LeFort P (1996) Metamorphism and magmatism during the Himalayan collision. In: Coward MP, Ries AC (ed) Collision tectonics. Geol Soc Lond Spec Publ, vol 19, pp 159–172

  • Leloup PH, Kienast JR (1993) High-temperature metamorphism in a major strike-slip shear zone: the Ailao Shan-Red River, People’s Republic of China. Earth Planet Sci Lett 118:213–234

    Article  Google Scholar 

  • Leloup PH, Lacassin R, Tapponnier P, Scharer U, Zhong D, Liu X, Zhang L, Ji S, Trinh PT (1995) The Ailao Shan-Red River shear zone (Yunnan, China), tertiary transform boundary of Indochina. Tectonophysics 251:3–84

    Article  Google Scholar 

  • Leloup PH, Mahéo G, Arnaud N, Kali E, Boutonnet E, Liu DY, Liu XH, Li HB (2010) The South Tibet detachment shear zone in the Dinggye area time constraints on extrusion models of the Himalayas. Earth Planet Sci Lett 292:1–16

    Article  Google Scholar 

  • Li XH, Liu Y, Li QL, Guo CH, Chamberlain KR (2009) Precise determination of Phanerozoic zircon Pb/Pb age by multi-collector SIMS without external standardization. Geochem Geophys Geosyst 10(4):1–21

    Article  Google Scholar 

  • Li QL, Li XH, Liu Y, Tang GQ, Yang JH, Zhu WG (2010) Precise U–Pb and Pb–Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique. J Anal At Spectrom 25:1107–1113

    Google Scholar 

  • Liu Y, Zhong D (1997) Petrology of high-pressure granulites from the eastern Himalayan syntaxis. J Metamorph Geol 15:451–466

    Article  Google Scholar 

  • Liu Y, Zhong D (1998) Tectonic framework of the eastern Himalayan syntaxis. Prog Nat Sci 8:366–370

    Google Scholar 

  • Liu Y, Berner Z, Massonne HJ, Zhong D (2006) Carbonatite-like dykes from the eastern Himalayan syntaxis: geochemical, isotopic, and petrogenetic evidence for melting of metasedimentary carbonate rocks within the orogenic crust. J Asian Earth Sci 26:105–120

    Article  Google Scholar 

  • Liu Y, Yang Z, Wang M (2007) History of zircon growth in a high-pressure granulite within the eastern Himalayan syntaxis, and tectonic implications. Int Geol Rev 49:861–872

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S et al (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Liu YS, Gao S, Hu Z, Gao C, Zong K, Wang D (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Ludwig KR (2001) Users manual for Isoplot/Ex rev. 3.23. Berkeley Geochronology Centre Special Publication, vol 1a, p 56

  • Martin AJ, DeCelles PG, Gehrels GE, Patchett PJ, Isachsen C (2005) Isotopic and structural constraints on the location of the Main Central thrust in the Annapurna Range, central Nepal Himalaya. Geol Soc Am Bull 117:926–944

    Article  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2003) Linking growth episodes of zircon and metamorphic textures to zircon chemistry: an example from the ultrahigh temperature granulites of Rogaland (SW Norway). In: Vance D, Muller W, Villa I (eds) Geochronology: linking the isotopic record with petrology and textures. Geol Soc Lond Spec Publ, vol 220, pp 65–81

  • Mukherjee BK, Sachan HK, Ogasawara Y, Muko A, Yoshioka N (2003) Carbonatebearing UHPM rocks from the Tso-Morari region, Ladakh, India: petrological implications. Int Geol Rev 45:49–69

    Article  Google Scholar 

  • Ni JF, Guzman-Speziale M, Bevis M, Holt WE, Wallace TC, Seager WR (1989) Accretionary tectonics of Burma and the three-dimensional geometry of the Burma subduction zone. Geology 17:68–71

    Article  Google Scholar 

  • O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions, and implications for tectonics. J Metamorph Geol 21:3–20

    Article  Google Scholar 

  • O’Brien PJ, Zotov N, Law R, Khan MA, Jan MQ (2001) Coesite in Himalayan eclogite and implications for models of India–Asia collision. Geology 29:435–438

    Article  Google Scholar 

  • Parrish RR, Hodges KV (1996) Isotopic constraints on the age and provenance of the lesser and greater Himalayan sequences, Nepalese Himalaya. GSA Bull 108:904–911

    Article  Google Scholar 

  • Parrish RR, Gough SJ, Searle MP, Waters DJ (2006) Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology 34:989–992

    Article  Google Scholar 

  • Richards A, Argles T, Harris N, Parrish R, Ahmad T, Darbyshire F, Draganites E (2005) Himalayan architecture constrained by isotopic tracers from clastic sediments. Earth Planet Sci Lett 236:773–796

    Google Scholar 

  • Richards A, Parrish R, Harris N, Argles T, Zhang L (2006) Correlation of lithotectonic units across the eastern Himalaya, Bhutan. Geology 34:341–344

    Google Scholar 

  • Rolland Y, Mahéo G, Guillot S, Pecher A (2001) Tectono-metamorphic evolution of the Karakorum metamorphic complex (Dassu-Askole area, NE Pakistan): exhumation of mid-crustal HT-MP gneisses in a convergent context. J Metamorph Geol 19:717–737

    Article  Google Scholar 

  • Rolland Y, Carrio-Schaffhauser E, Sheppard SMF, Pêcher A, Esclauze L (2006) Metamorphic zoning and geodynamic evolution of an inverted crustal section (Karakorum margin, N Pakistan), evidence for two metamorphic events. Int J Earth Sci 95:288–305

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Zircon behaviour in deeply subducted rocks. Elements 3:31–35

    Article  Google Scholar 

  • Schelling DD (1999) Frontal structural geometries and detachment tectonics of the northeastern Karachi arc, southern Kirthar Range, Pakistan. Geol Soc Am Spec Pap 328:287–302

    Google Scholar 

  • Searle MP (1996) Cooling history, erosion, exhumation, and kinematics of the Himalaya-Karakoram-Tibet orogenic belt. In: Yin A, Harrison TM (eds) The tectonic evolution of Asia. Cambridge University Press, New York, pp 110–137

    Google Scholar 

  • Shen K, Zhang ZM, Yan L, Wang JL (2008) Composition and evolution of fluids in the continental orogen: a study of fluid inclusions in high-pressure granulites from the Namche Barwa area, Tibet of southwest China. Acta Petrol Sin 24:1488–1500 (in Chinese with English abstract)

    Google Scholar 

  • Singh S, Barley ME, Brown SJ, Jain AK, Manickavasagam RM (2002) SHRIMP U–Pb in zircon geochronology of the Chor granitoid: evidence for Neoproterozoic magmatism in the Lesser Himalayan granite belt of NW India. Precambr Res 118:285–292

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Su W, Ye K, Chen Y, Zhang M, Liu X (2010) PTt evolution of granulite from the Namche-Barwa, eastern Himalayan: new constrains on reaction textures, fluid characteristic. Acta Mineral Petrogr

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Special Publications. Geological Society, London, pp 313–345

  • Tomkins HS, Williams IS, Ellis DJ (2005) In situ U–Pb dating of zircon formed from retrograde garnet breakdown during decompression in Rogaland, SW Norway. J Metamorph Geol 23:201–215

    Article  Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Google Scholar 

  • Whittington A, Foster G, Harris N, Vance D, Ayres M (1999) Lithostratigraphic correlations in the western Himalaya: an isotopic approach. Geology 27:585–588

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Xu WC, Zhang HF, Parrish R, Harris N, Guo L, Yuan HL (2010) Timing of granulite-facies metamorphism in the eastern Himalayan syntaxis and its tectonic implications. Tectonophysics 485:231–244

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev 76:1–131

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan–Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yin A, Harrison TM, Ryerson FJ, Chen WJ, Kidd WSF, Copeland P (1994) Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. J Geophys Res 99:18175–18201

    Article  Google Scholar 

  • Yin A, Harrison TM, Murphy MA, Grove M, Nie S, Ryerson FJ, Xiaofeng W, Zengle C (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geol Soc Am Bull 111:1644–1664

    Article  Google Scholar 

  • Zeitler PK, Meltzer AS, Koons PO, Craw D, Hallet B, Chamberlain CP, Kidd WSF, Park SK, Seeber L, Bishop M, Shroder J (2001) Erosion, Himalayan geodynamics, and the geomorphology of metamorphism. GSA Today 11:4–8

    Article  Google Scholar 

  • Zhang LS, Schärer U (1999) Age and origin of magmatism along the Cenozoic Red River shear belt, China. Contrib Mineral Petrol 134:67–85

    Article  Google Scholar 

  • Zhang J, Ji J, Zhong D, Ding L, He S (2004) Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process. Sci China (Ser D) 47:138–150

    Article  Google Scholar 

  • Zhang ZM, Wang JL, Zhao GC, Shi C (2008) Geochronology and Precambrian tectonic evolution of the Namche Barwa complex from the eastern Himalayan syntaxis, Tibet. Acta Petrologica Sinica 24:1477–1487 (in Chinese with English abstract)

    Google Scholar 

  • Zhang ZM, Wang JL, Dong X, Zhao GC, Yu F, Wang W, Liu F (2009) Petrology and geochronology of the Charnockite from the southern Gangdese Belt, Tibet: evidence for the Andean-type orogen. Acta Petrologica Sinica 25:1707–1720

    Google Scholar 

  • Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X, Liou JG (2010a) Two-stages of granulite-facies metamorphism in the eastern Himalayan syntaxis, south Tibet: evidence for the subduction of the Neo-Tethys and Indian continent beneath Asia. J Metamorph Geol 28:719–733

    Article  Google Scholar 

  • Zhang ZM, Zhao GC, Wang JL, Dong X, Santosh M (2010b) Late Cretaceous Adakite-like charnockite from the Gangdese batholith: evidence for the Neo-Tethyan mid-ocean ridge subduction in southeastern Tibet? Gondwana Res 17:615–631

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the State Key Project for Basic Research of China (2009CB825001) and the National Natural Science Foundation of China (40872059, 41021063, 40721003 and 40721062). We are indebted to Qiuli Li and Yu Liu for conducting the Cameca-1280 SIMS U–Pb analyses, Xin Yan for Cathodoluminescence (CL) images analysis. We are especially grateful to Prof. Guochun Zhao, Dr. Ben Goscombe and Dr. Quinn Cam for their constructive and helpful suggestions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, W., Zhang, M., Liu, X. et al. Exact timing of granulite metamorphism in the Namche-Barwa, eastern Himalayan syntaxis: new constrains from SIMS U–Pb zircon age. Int J Earth Sci (Geol Rundsch) 101, 239–252 (2012). https://doi.org/10.1007/s00531-011-0656-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0656-0

Keywords

Navigation