Skip to main content
Log in

Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Two age groups were determined for the Cenozoic granitoids in the Dinarides of southern Serbia by high-precision single grain U–Pb dating of thermally annealed and chemically abraded zircons: (1) Oligocene ages (Kopaonik, Drenje, Željin) ranging from 31.7 to 30.6 Ma (2) Miocene ages (Golija and Polumir) at 20.58–20.17 and 18.06–17.74 Ma, respectively. Apatite fission-track central ages, modelling combined with zircon central ages and additionally, local structural observations constrain the subsequent exhumation history of the magmatic rocks. They indicate rapid cooling from above 300°C to ca. 80°C between 16 and 10 Ma for both age groups, induced by extensional exhumation of the plutons located in the footwall of core complexes. Hence, Miocene magmatism and core-complex formation not only affected the Pannonian basin but also a part of the mountainous areas of the internal Dinarides. Based on an extensive set of existing age data combined with our own analyses, we propose a geodynamical model for the Balkan Peninsula: The Late Eocene to Oligocene magmatism, which affects the Adria-derived lower plate units of the internal Dinarides, was caused by delamination of the Adriatic mantle from the overlying crust, associated with post-collisional convergence that propagated outward into the external Dinarides. Miocene magmatism, on the other hand, is associated with core-complex formation along the southern margin of the Pannonian basin, probably associated with the W-directed subduction of the European lithosphere beneath the Carpathians and interfering with ongoing Dinaridic–Hellenic back-arc extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Benedek K (2002) Paleogene igneous activity along the easernmost segment of the Periadriatic-Balaton lineament. Acta Geol Hungarica 45:359–371

    Article  Google Scholar 

  • Bijwaard H, Spakman W (2000) Non-linear global P-wave tomography by iterated linearized inversion. Geophys J Int 141:71–82

    Article  Google Scholar 

  • Bird P (1979) Continental Delamination and the Colorado Plateau. J Geophys Res 84:7561–7571

    Google Scholar 

  • Blichert-Toft J, Chauvel C, Albarède F (1997) Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib Mineral Petrol 127:248–260

    Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009

    Article  Google Scholar 

  • Brković T, Malešević M, Urošević M, Trifunović S, Radanović Z, Dimitrijević M, Dimitrijević MN (1976) Geological map and explanatory text of the sheet Ivanjica. Savezni Geoloski Zavod, Beograd

    Google Scholar 

  • Brun JP, Soukoutis D (2007) Kinematics of the Southern Rhodope Core Complex (North Greece). Int J Earth Sci 96:1079–1099

    Article  Google Scholar 

  • Burchfiel BC, Nakov R, Tzankov T, Royden L (2000) Cenozoic extension in Bulgaria and northern Greece: the northern part of the Aegean extensional regime. In: Bozkurt E, Winchester E, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area, vol 173. Geological Society (London) Special Publications, London, pp 325–352

    Google Scholar 

  • Burchfiel BC, Nakov R, Tzankov T (2003) Evidence from the Mesta half-graben, SW Bulgaria, for the Late Eocene beginning of Aegean extension in the Central Balkan Peninsula. Tectonophysics 375:61–76

    Article  Google Scholar 

  • Burchfiel BC, Nakov R, Dumurdzanov N, Papanikolaou D, Tzankov T, Kotzev V, Todosov A, Nurce B (2008) Evolution and dynamics of the Cenozoic tectonics of the South Balkan extensional system. Geosphere. doi:10.1130/GES00169.1

  • Ćebić V (1990) Konačni izveštaj o geološko-petrološkom i geohemijskom izučavanju tercijarnog magmatskog kompleksa surduličke oblasti. Fond Geoinstituta, Beograd. (The final report on geological-petrological and geochemical investigations of the Tertiary magmatic complex of Surdulica area. Fund of Geoinstitute, Belgrade, in Serbo-Croatian)

  • Červenjak Z, Ferara G, Tongiorg E (1963) Age determination of some Yugoslav granites and granodiorites by the rubidium-strontium method. Nature 197:893–993

    Article  Google Scholar 

  • Chappell BJ, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174

    Google Scholar 

  • Corrigan JD (1983) Apatite fission-track analysis of Oligocene strata in South Texas, USA; testing annealing models. Chem Geol 104:227–249

    Article  Google Scholar 

  • Csontos L (1995) Tertiary tectonic evolution of the Intra-Carpathian area: a review. Acta Vulcan 7:1–13

    Google Scholar 

  • Cvetković V (2002) Nature and origin of pyroclastic deposits of the Miocene Eruptive Complex of Borač (Central Serbia). Bull CXXV Acad Serbe Sci Arts Classe Sci Math et Sci Natur 342:209–215

    Google Scholar 

  • Cvetković V, Pécskay Z (1999) The Early Miocene eruptive complex of Borač (central Serbia): volcanic facies and evolution over time. Extended abstract. Carpathian Geology 2000, October 11–14, 1999, Smolenice. Geol Carpathica 50:91–93

    Google Scholar 

  • Cvetković V, Poli G, Resimić-Šarić K, Prelević D, Lazarov M (2002) Tertiary post-collision granitoid of Mt. Kopaonik (Serbia)—Petrogenetic constraints based on new geochemical data. In: MichalíkJ, Šimon L, Vozár J (eds) Proceedings of XVII. Congress of Carpathian-Balkan Geological Association Bratislava, September 1st–4th 2002. Geol Carpathica 53

  • Cvetković V, Prelević D, Downes H, Jovanović M, Vaselli O, Pécskay Z (2004a) Origin and geodynamic significance of Tertiary postcollisional basaltic magmatism in Serbia (central Balkan Peninsula). Lithos 73:161–186

    Article  Google Scholar 

  • Cvetković V, Downes H, Prelević D, Jovanovic M, Lazarov M (2004b) Characteristics of the lithospheric mantle beneath East Serbia inferred from ultramafic xenoliths in Palaeogene basanites. Contrib Mineral Petrol 148:335–357

    Article  Google Scholar 

  • Cvetković V, Downes H, Prelević D, Lazarov M, Resimić-Sarić K (2007a) Geodynamic significance of ultramafic xenoliths from Eastern Serbia: Relics of sub-arc oceanic mantle? J Geodyn 43:504–527

    Article  Google Scholar 

  • Cvetković V, Poli G, Christofides G, Koroneos A, Pécskay Z, Resimić-Sarić K, Eric V (2007b) The Miocene granitoid rocks of Mt. Bukulja (central Serbia): evidence for pannonian extension-related granitoid magmatism in the northern Dinarides. Europ J Mineral 19:513–532

    Article  Google Scholar 

  • Del Moro A, Innocenti F, Kyriakopoulos C, Manetti P, Papadopoulos P (1988) Tertiary granitoids from Thrace (northern Greece)–Sr isotopic and petrochemical data. N J Miner Abh 159:113–135

    Google Scholar 

  • Delaloye M, Lovrić A, Karamata S (1989) Age of tertiary granitic rocks of Dinarides and Vardar zone. 14th CBGA Congr Ext Abstr Sofia 1:1186–1189

    Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites—Nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, Developments in Petrology no. 13, Amsterdam, pp 19–23

  • Dumurdzanov N, Serafimovski T, Burchfiel BC (2005) Cenozoic tectonics of Macedonia and its relation to the South Balkan extensional regime. Geosphere 1:1–22

    Article  Google Scholar 

  • Dunkl I (2002) TRACKKEY: a windows program for calculation and graphical presentation of fission track data. Comput Geosci 18:3–12

    Google Scholar 

  • Egli D (2008) Das Kopaonik-Gebirge in Südserbien—Stratigraphie, Strukturen und Metamorphose. MSc Thesis, University of Basel, Basel

  • Faccenna C, Funiciello F, Civetta L, D’Antonio M, Moroni M, Piromallo C (2007) Slab disruption, mantle circulation, and the opening of the Tyrrhenian basins. In: Beccaluva L, Bianchini G, Wilson M (eds) Geol Soc Am Spec Paper 418, pp 153–169

  • Funiciello F, Moroni M, Piromallo C, Faccenna C, Cenedese A, Bui HA (2006) Mapping mantle flow during retreating subduction: laboratory models analyzed by feature tracking. J Geophys Res 111:B03402. doi:10.1029/2005JB003792

    Article  Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission-track ages. Nucl Tracks Radiat Meas 21:459–470

    Article  Google Scholar 

  • Gallagher K, Brown R, Johnson C (1998) Fission-track anaysis and its applications to geological problems. Ann Rev Earth Plan Sci 26:519–572

    Article  Google Scholar 

  • Gapais D (1989) Shear structures within deformed granites: mechanical and thermal indicators. Geology 17:1144–1147

    Article  Google Scholar 

  • Georgiev V, Milovanov P, Monchev P (2003) K–Ar dating of the magmatic activity in the Momchilgrad volcano-tectonic depression. CR Acad Bulgare Sci 56:49–54

    Google Scholar 

  • Gleadow AJW (1981) Fission-track dating methods–what are the real alternatives. Nucl Tracks Radiat Meas 5:3–14

    Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural long-term annealing experiment for apatite. Nucl Tracks 5:169–174

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contr Min Pet 94:405–415

    Article  Google Scholar 

  • Graf J (2001) Alpine Tectonics in Western Bulgaria: Cretaceous Compression of the Kraishte Region and Cenozoic Exhumation of the Crystalline Osogovo-Lisets Complex, PhD Thesis, ETH Zurich

  • Green PF, Duddy IR (1989) Some comments on paleotemperature estimation from apatite fission track analysis. J Petr Geol 12:111–114

    Article  Google Scholar 

  • Harkovska A, Pécskay Z (1997) The Tertiary magmatism in Ruen magmato-tectonic zone (W. Bulgaria)–A comparision of new K-Ar ages and geological data. In: Boev B, Serafimovski T (eds) Magmatism, Metamorphism and Metallogeny of the Vardar Zone and Serbo-Macedonian Massif. Faculty Mining Geology. Stip–Dojran, Rep, Macedonia, pp 137–142

    Google Scholar 

  • Harkovska A, Marchev P, Machev P, Pécskay Z (1998) Paleogene magmatism in the Central Rhodope area, Bulgaria—a review and new data. Acta Vulcan 10:199–216

    Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta-age calibration of fission-track dating. Isotope Geosci 1:285–317

    Google Scholar 

  • Jahn-Awe S, Froitzheim N, Nagel TJ, Frei D, Georgiev N, Pleuger J (2010) Structural and geochronological evidence for Paleogene thrusting in the Western Rhodopes (SW Bulgaria), subm. Tectonics 29:TC3008. doi:10.1029/2009TC002558

  • Karamata S, Delaloye M, Lovrić A, Knežević V (1992) Two genetic groups of tertiary granitic rocks of Central and Western Serbia. Ann Géol Péninsule Balkan 56:263–283

    Google Scholar 

  • Karamata S, Pécskay Z, Knežević V, Memović E (1994) Origin and age of Rogozna (central Serbia) volcanics in the light of new isotopic data. Bull Acad Serb Sci 35:41–46

    Google Scholar 

  • Ketcham RA, Donelick RA, Donelick M (2003) AFTSolve: a program for multi-kinetic modeling of apatite fission-track data. Am Miner 88:929–939

    Google Scholar 

  • Ketcham RA, Carter A, Donelick RA, Barbarand J, Hurford AJ (2007) Improved measurement of fission-track annealing in apatite using c-axis projection. Am Miner 92:789–798

    Article  Google Scholar 

  • Knežević V, Szeki-Fux F, Steiger R, Pécskay Z, Boronihin VA, Karamata S (1991) Petrology of Fruška-Gora latites—volcanic precursors at the southern margin of the Pannonian basin. In: Geodynamic Evololution of the Pannonian Basin, Serb Acad Sci Arts 62, pp 243–259

  • Knežević V, Karamata S, Vasković N, Cvetković V (1995) Granodiorites of Kopaonik and contact metamorphic zone. In: Geology and Metallogeny of the Kopaonik Mt., Belgrade, pp 172–184

  • Korbar T (2009) Orogenic evolution of the external dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates. Earth Sci Rev 96:296–312

    Article  Google Scholar 

  • Koroneos A, Poli G, Cvetković V, Christofides G, Krstić D, Pécskay Z (2010) Petrogenetic and tectonic inferences from the study of the Mt Cer pluton (West Serbia). Geol Mag doi:10.1017/S0016756810000476

  • Kounov A, Seward D, Bernoulli D, Burg JP, Ivanov Z (2004) Thermotectonic evolution of an extensional dome: the Cenozoic Osogovo-Lisets core complex (Kraishte zone, western Bulgaria). Int J Earth Sci 93:1008–1024

    Article  Google Scholar 

  • Kovács I, Csontos L, Szabó C, Bali E, Falus G, Benedek K, Zajacz Z (2007) Paleogene–early Miocene igneous rocks and geodynamics of the Alpine–Capathian–Pannonian–Dinaric region: an integrated approach. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic Volcanism in the Mediterranean Area, Geol Soc Am Spec Paper 418:93–112

  • Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite: 2. A quantitative analysis. Chem Geol 65:1–13

    Article  Google Scholar 

  • Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–162

    Article  Google Scholar 

  • Liati A (1986) Regional metamorphism and overprinting contact metamorphism of the Rhodope Zone, near Xanthi (N. Greece). PhD Thesis, Technische Universität Braunschweig

  • Lilov P, Yanev Y, Marchev P (1987) K–Ar dating of the eastern rhodopes paleogene magmatism. Geol Balcanica 17:49–58

    Google Scholar 

  • Ludwig K (2005) Isoplot—a plotting and regression program for radiogenic isotope data. USGS Open File report, Boulder

  • Marakis G (1969) Geochronologic studies of some granites from Macedonia. Ann Géol Pays Héll 21:121–252

    Google Scholar 

  • Marchev P, Raicheva R, Downes H, Vaselli O, Chiaradia M, Moritz R (2004) Compositional diversity of Eocene–Oligocene basaltic magmatism in the Eastern Rhodopes, SE Bulgaria: implications for genesis and tectonic setting. Tectonophysics 393:301–328

    Article  Google Scholar 

  • Marchev P, Kaiser-Rohrmeier M, Heinrich C, Ovtcharova M, von Quadt A, Raicheva R (2005) Hydrothermal ore deposits related to post-orogenic extensional magmatism and core complex formation: the Rhodope Massif of Bulgaria and Greece. Ore Geol Rev 27:53–89

    Article  Google Scholar 

  • Marović M, Djoković I, Toljić M, Spahić D, Milivojević J (2007) Extensional Unroofing of the Veliki Jastrebac Dome (Serbia). Ann Géol Péninsule Balkan 68:21–27

    Article  Google Scholar 

  • Mattinson JM (2005) Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66

    Article  Google Scholar 

  • Mikes T, Baldi-Beke M, Kazmer M, Dunkl I, von Eynatten H (2008) Calcareous nannofossil age constraints on Miocene flysch sedimentation in the Outer Dinarides (Slovenia, Croatia, Bosnia-Herzegovina and Montenegro). Geol Soc (London) Spec Pub 298:335–363

    Article  Google Scholar 

  • Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcan Geotherm Res 167:282–299

    Article  Google Scholar 

  • Mojsilović S, Baklajić D, Djoković I (1978) Basic Geological Map of the SFRY, 1:100’000, Sheet Sjenica (K32-29), Savezni Geološki Zavod, Beograd (1960–1973)

  • Mojsilović S, Djoković I, Baklajić D, Rakić B (1980) Geology of the Sheet Sjenica (K32-29), Explanatory notes, Savezni Geološki Zavod, Beograd (1973, in Serbo-Croatian, English and Russian summaries)

  • Pamić J (1997) Volcanic rocks of the Sava–Drava interfluve and Baranja. Nafta Monograph, Zagreb

  • Pamić J, Balen D (2001) Tertiary magmatism of the Dinarides and the adjoining South Pannonian Basin, an overview. Acta Vulcan 13:9–24

    Google Scholar 

  • Pamić J, Palinkas L (2000) Petrology and geochemistry of Paleogene tonalites from the easternmost parts of the Periadriatic Zone. Miner Petrol 70:121–141

    Article  Google Scholar 

  • Pamić J, Pécskay Z, Balen D (2000) Lower oligocene K–Ar ages of high-K calc-alkaline and shoshonite rocks from the North Dinarides in Bosnia. Miner Petrol 70:313–320

    Article  Google Scholar 

  • Pamić J, Balen D, Herak M (2002a) Origin and geodynamic evolution of Late Paleogene magmatic associations along the Periadriatic–Sava–Vardar magmatic belt. Geodin Acta 15:209–231

    Article  Google Scholar 

  • Pamić J, Tomljenović B, Balen D (2002b) Geodynamic and petrogenetic evolution of Alpine ophiolites from the central and NW Dinarides: an overview. Lithos 65:113–142

    Article  Google Scholar 

  • Pécskay Z, Balogh K, Harkovska A (1991) K–Ar dating of the Perelik volcanic massif (Central Rhodopes, Bulgaria). Acta Geol Hungarica 34:101–110

    Google Scholar 

  • Pécskay Z, Harkovska A, Hadjiev A (2000) K–Ar dating of Mesta volcanics (SW Bulgaria). Geol Balcanica 30:3–11

    Google Scholar 

  • Pécskay Z, Eleftheriadis G, Koroneos A, Soldatos T, Christofides G (2003) K–Ar dating, geochemistry and evolution of the Tertiary volcanic rocks (Thrace, northeastern Greece). In: Eliopoulous DG (ed) Mineral exploration and sustainable development. Mill press, Rotterdam, pp 1229–1232

    Google Scholar 

  • Piromallo C, Morelli A (2003) P wave tomography of the mantle under the Alpine–Mediterranean area. J Geophys Res 108:ESE1.1–ESE1.23

    Google Scholar 

  • Piromallo C, Becker TW, Funiciello F, Faccenna C (2006) Three-dimensional instantaneous mantle flow induced by subduction. Geophys Res Lett 33:L08304. doi:10.1029/2005GL025390

    Article  Google Scholar 

  • Poli G, Tommasini S, Halliday AN (1996) Trace elements and isotopic exchange during acid-basic magma interaction processes. Trans R Soc Edinburgh Earth Sci 87:225–232

    Google Scholar 

  • Prelević D, Cvetković V, Foley SF (2001) Composite igneous intrusions from Serbia; two case studies of interaction between lamprophyric and granitoid magmas. Tertiary magmatism in the Dinarides. Acta Vulcan 13:145–157

    Google Scholar 

  • Prelević D, Foley SF, Cvetković V, Romer RL (2004) Origin of minette by mixing of lamproite and felsic magmas in Veliki Majdan, Serbia. J Petrol 45:759–792

    Article  Google Scholar 

  • Prelević D, Foley SF, Romer RL, Cvetković V, Downes H (2005) Tertiary ultrapotassic volcanism in Serbia: constraints on petrogenesis and mantle source characteristics. J Petrol 46:1443–1487

    Article  Google Scholar 

  • Prelević D, Foley SF, Stracke A, Romer RL, Conticelli S (2010) Hf isotopes in Mediterranean lamproites: mixing of melts from asthenosphere and crustally contaminated lithosphere. Lithos. doi:10.1016/j.lithos.2010.07.007

  • Ratschbacher L, Frisch W, Linzer H-G, Merle O (1991) Lateral extrusion in the Eastern Alps, 2, structural analysis. Tectonics 10:257–271

    Article  Google Scholar 

  • Rosenberg CL (2004) Shear zones and magma ascent: A model based on a review of the tertiary magmatism in the Alps. Tectonics 23:TC3002. doi:10.1029/2003TC001526

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Heinrich DH, Karl KT (eds) Treatise on geochemistry. Pergamon, Oxford, pp 1–64

    Chapter  Google Scholar 

  • Schaltegger U, Brack P (2007) Crustal-scale magmatic systems during intracontinental strike—slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. Int J Earth Sci 96:1131–1151

    Article  Google Scholar 

  • Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharova M (2008) Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267:266–275

    Article  Google Scholar 

  • Schaltegger U, Brack P, Ovtcharova M, Peytcheva I, Schoene B, Stracke A, Marocchi M, Bargossi GM (2009) 700, 000 years of magma accretion, crystallization and initial cooling in a composite pluton recorded by zircon and titanite (Adamello batholith, northern Italy). Earth Planet Sci Lett 286:208–218

    Article  Google Scholar 

  • Schefer S (2010) Tectono-metamorphic and magmatic evolution of the Internal Dinarides (Kopaonik area, southern Serbia) and its significance for the geodynamic evolution of the Balkan Peninsula. PhD Thesis, University of Basel, Switzerland

  • Schefer S, Egli D, Frank W, Fügenschuh B, Ovtcharova M, Schaltegger U, Schoene B, Schmid SM (2008) Metamorphic and igneous evolution of the innermost Dinarides in Serbia. In: 6th Swiss Geoscience Meeting, Lugano. Abstract Volume, pp 60–61

  • Schefer S, Egli D, Missoni S, Bernoulli D, Fügenschuh B, Gawlick HJ, Jovanović D, Krystyn L, Lein R, Schmid SM, Sudar MN (2010) Triassic metasediments in the Internal Dinarides (Kopaonik area, southern Serbia): stratigraphy, paleogeographic and tectonic significance. Geol Carpathica 61:89–109

    Article  Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Seghedi I, Downes H, Szakacs A, Mason PRD, Thirlwall MF, Rosu E, Pécskay Z, Marton E, Panaiotu C (2004) Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146

    Article  Google Scholar 

  • Shand SJ (1947) Eruptive rocks. Their genesis, composition, classification, and their relation to ore deposits, 3rd edn. Wiley, New York

    Google Scholar 

  • Simić V (1956) Zur Geologie des Studenicagebietes (Südwestserbien). Vesnik Bull Serv Geol Geophys 12:5–66

    Google Scholar 

  • Singer B, Marchev P (2000) Temporal evolution of arc magmatism and hydrothermal activity including epithermal gold veins, Borovitsa caldera, southern Bulgaria. Econ Geol 95:1155–1164

    Article  Google Scholar 

  • Skourlis K, Doutsos T (2003) The Pindos Fold-and-thrust belt (Greece): inversion kinematics of a passive continental margin. Int J Earth Sci 92:891–903

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. Rev Miner Geochem 58:95–122

    Article  Google Scholar 

  • Tagami T, Dimitru TA (1996) Provenance and history of the Franciscan accretionary complex: constraints from zircon fission-track thermochronology. J Geophys Res 101:11353–11364

    Article  Google Scholar 

  • Tagami T, Galbreith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van den Haute P, de Corte F (eds) Advances in fission-track geochronology. Kluwer Academic Publishers, Dordrecht, pp 99–114

    Google Scholar 

  • Trajanova M, Pécskay Z, Itaya T (2008) K–Ar geochronology and petrography of the Miocene Pohorje Mountains batholith (Slovenia). Geol Carpathica 59:247–260

    Google Scholar 

  • Urošević M, Pavlović Z, Klisić M, Brković T, Malešević M, Trifunović S (1970a) Basic Geological Map of the SFRY, 1:100’000, Sheet Novi Pazar (K34-3), Savezni Geološki Zavod, Beograd (1966)

  • Urošević M, Pavlović Z, Klisić M, Brković T, Malešević M, Trifunović S (1970b) Basic Geological Map of the SFRY, 1:100’000, Sheet Vrnjci (K34-18), Savezni Geološki Zavod, Beograd (1966)

  • Ustaszewski K, Schmid SM, Fuegenschuh B, Tischler M, Kissling E, Spakman W (2008) A map-view restoration of the Alpine–Carpathian–Dinaridic system for the Early Miocene. Swiss J Geosci 101:S273–S294

    Article  Google Scholar 

  • Ustaszewski K, Schmid SM, Lugović B, Schuster R, Schaltegger U, Bernoulli D, Hottinger L, Kounov A, Fügenschuh B, Schefer S (2009) Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): Implications for the collision of the Adriatic and European plates. Lithos 108:106–125

    Article  Google Scholar 

  • Ustaszewski K, Kounov A, Schmid SM, Schaltegger U, Frank W, Krenn E, Fügenschuh B (2010) Evolution of the Adria–Europe plate boundary in the northern Dinarides—from continent-continent collision to back-arc extension. Tectonics (in press)

  • van Hinsbergen DJJ, Hafkenscheid E, Spakman W, Meulenkamp JE, Wortel R (2005) Nappe stacking resulting from continental lithosphere below subduction of oceanic and Greece. Geology 33:325–328

    Article  Google Scholar 

  • von Blanckenburg F, Davies JH (1995) Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 14:120–131

    Article  Google Scholar 

  • von Quadt A, Moritz R, Peytcheva I, Heinrich CA (2005) 3: Geochronology and geodynamics of Late Cretaceous magmatism and Cu-Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geol Rev 27:95–126

    Article  Google Scholar 

  • Vukov M (1989) Petrology and geochemistry of Zeljin granitoid (in Serbian). PhD Thesis, Faculty of Mining and Geology, University of Belgrade

  • Vukov M (1995) Petrologic characteristics of granitoid rocks of Željin and Polumir. In: Geology and Metallogeny of the Kopaonik Mountain, Belgrade, pp 518–216

  • Vukov M, Milovanović D (2002) The Polumir granite–additional data on its origin. Ann Géol Péninsule Balkan 64:167–185

    Article  Google Scholar 

  • Yamada R, Tagami T, Nishimura S, Ito H (1995) Annealing kinetics of fission tracks in zircon: an experimental study. Chem Geol 122:249–258

    Article  Google Scholar 

  • Zagorchev I, Moorbath S, Lilov P (1987) Radiogeochronological data on the Alpine igneous activity in the western part of the Rhodope Massif. Geol Balcanica 17:59–71

    Google Scholar 

  • Zelić M (2004) Tectonic history of the Vardar zone: constraints from the Kopaonik area (Serbia). PhD Thesis, Universita di Pisa, Italy

  • Zelić M, Levi N, Malasoma A, Marroni M, Pandolfi L, Trivić B (2010) Alpine tectono-metamorphic history of the continental units from Vardar zone: the Kopaonik Metamorphic Complex (Dinaric–Hellenic belt, Serbia). Geol J 45:59–77. doi:10.1002/gj.1169

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Schoene for his help with sample preparation and mass spectrometry. K. Ustaszewski gave valuable input to the regional geological discussion. Yet unpublished radiometric ages were made available by the courtesy of D. Prelević. This manuscript greatly benefited from the comments and suggestions by D. Bernoulli. Very thorough and constructive revisions by C. B. Burchfiel and A. von Quadt are highly appreciated. S. Schefer thanks the Freiwillige Akademische Gesellschaft Basel for supporting him and his family during the final stage of his PhD thesis. This project was financed by the Swiss National Science Foundation, Project No. 200020-109278 granted to S. M. Schmid, B. Fügenschuh, and S. Schefer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senecio Schefer.

Appendix A: Fission-track dating

Appendix A: Fission-track dating

Remarks regarding the interpretation of fission-track data

When interpreting fission-track results, we took into account that the central ages obtained by dating the minerals are not necessarily a geological meaningful age because the tracks produced by the decay of 238U are not stable at all temperature conditions. There is a temperature range, the partial annealing zone (PAZ), at which the tracks in the mineral lattice become annealed. As a result of the annealing process, these tracks shorten and eventually disappear completely. The effective closure of the system lies within this PAZ and is dependent on the overall cooling rates and the kinetic properties of the minerals. The specific PAZ for apatite lies between 120 and 60°C (Green and Duddy 1989; Corrigan 1983). The PAZ for zircon is not equally well defined and a wide range of temperature bounds has been published. Yamada et al. (1995) suggest temperature ranges of ca. 390–170°C, whereas Tagami and Dimitru (1996) and Tagami et al. (1998) report ca. 310–230°C. Recently, in his overview on the zircon fission-track dating method, Tagami (2005) reported temperature ranges for the zircon closure temperature of ca. 300–200°C. Accordingly, we use a value of 250 ± 50°C for the closure temperature and a zircon PAZ of 300–200°C.

Apatite fission-track thermal modelling

Fission tracks in apatite form continuously through time with an approximately uniform initial mean length of ~16.3 μm (Gleadow et al. 1986). Upon heating, tracks gradually anneal and shorten to a length that is a function of the time and maximum temperature to which the apatites were exposed. For example, tracks are completely annealed at a temperature of 110–120°C for a period of 105–106 years (Gleadow and Duddy 1981). These annealing characteristics allow the generation of time–temperature paths by inverse modelling (e.g. Gallagher et al. 1998; Ketcham et al. 2003). As the resolution of the AFT thermo-chronometer is limited to the temperature range of 120–60°C (Laslett et al. 1987), the paths of the t-T envelope defined for the zones outside of this range are not necessarily representative for the real thermal evolution of a sample.

Modelling of the apatite age and track-length distribution data was carried out with the program HeFTy (Ketcham et al. 2003). Fission-track age, track-length distribution, and etch pits diameters (Dpar) as well as user-defined time–temperature (t-T) boxes are used as input parameters. An inverse Monte Carlo algorithm with a multikinetic annealing model (Ketcham et al. 2007) was used to generate the time–temperature paths. The algorithm generates a large number of time–temperature paths, which are tested with respect to the input data. The t-T paths are forced to pass through the time–temperature boxes (constraints). The fitting of the measured input data and modelled output data are statistically evaluated and characterized by the value of ‘goodness of fit’ (GOF). A ‘good’ result corresponds to values >0.5, whereas a value of 0.05 or higher is considered to reflect an ‘acceptable’ fit between modelled and measured data.

It is important to remember that the ‘best’ thermal history obtained during this process is not necessarily the only possible one. Other thermal histories may match the observed data similarly well, and it is therefore imperative to consider as many other geological constraints as possible to determine the most likely path.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schefer, S., Cvetković, V., Fügenschuh, B. et al. Cenozoic granitoids in the Dinarides of southern Serbia: age of intrusion, isotope geochemistry, exhumation history and significance for the geodynamic evolution of the Balkan Peninsula. Int J Earth Sci (Geol Rundsch) 100, 1181–1206 (2011). https://doi.org/10.1007/s00531-010-0599-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0599-x

Keywords

Navigation