Skip to main content
Log in

Migration of geothermal fluids in extensional terrains: the ore deposits of the Boccheggiano-Montieri area (southern Tuscany, Italy)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

An integrated study based on fluid inclusion, δ18O composition and structural analyses was carried out on a Pliocene fossil hydrothermal system, located to the South of the present active Larderello geothermal field, in the Boccheggiano-Montieri area. The study area is typified by mineralized cataclastic levels related to Late Oligocene–Early Miocene thrust surfaces, and to the following two generations of normal faults of Miocene and Pliocene ages, respectively. Within the damage zone of the Pliocene Boccheggiano fault, the mineralization is mainly made up of quartz and pyrite. Quartz + Pb–Zn sulfides, or quartz + Pb–Zn sulfides + fluorite + carbonates assemblages occur instead in the older cataclastic levels. Two generations of liquid-rich fluid inclusions were recognized in quartz and fluorite: the first one, with homogenization temperatures ranging between 172 and 331°C and salinity between 0.0 and 8.8 wt.% NaClequiv., records the early stage of hydrothermal activity. The second generation of fluid inclusions documents a later stage, with homogenization temperature from 124 to 288°C and salinity from 0.2 to 1.9 wt.% NaClequiv.. Fluid inclusions analyses also indicate that mixing of fluid with distinct salinities and/or temperatures was a widespread process during the early stage, and that fluid temperatures decreased moving from the Boccheggiano fault toward the more distal and older cataclastic levels. The δ18O values of water in equilibrium with hydrothermal quartz, which range from −5.7 to −0.1‰, are related to the circulation of meteoric water mixed with saline water that leached the evaporite level and enriched in δ18O through water–rock interaction, and/or with magmatically derived fluids. Results indicate that the damage zone of the Pliocene Boccheggiano fault represented the main channel for the flow of meteoric water, which was heated at depth, then mixed with high salinity fluids, and finally ascend to infiltrate along the older cataclastic levels. Our results, based on fluid inclusions, oxygen isotopic compositions and structural analyses indicate that a single fluid flow path run through the damage zone of the Boccheggiano fault and the older cataclasites, which were thus hydraulically connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Accaino F, Tinivella U, Rossi G, Nicolich R (2005) Geofluid evidence from analysis of deep crustal seismic data (Southern Tuscany, Italy). J Volcan Geotherm Res 148:46–59. doi:10.1016/j.jvolgeores.2005.04.013

    Article  Google Scholar 

  • Arisi Rota F, Vighi L (1971) Le mineralizzioni a pirite e a solfuri misti In: La Toscana meridionale. Rend Soc Italy Mineral Petrol 27:370–422

    Google Scholar 

  • Asprey LB (1976) The preparation of very pure F2 gas. J Fluor Chem 7:359–361. doi:10.1016/S0022-1139(00)84009-9

    Article  Google Scholar 

  • Barbier E (2002) Geothermal energy technology and current status: an overview. Renew Sustain Energy Rev 6:3–65. doi:10.1016/S1364-0321(02)00002-3

    Article  Google Scholar 

  • Barelli A, Bertini G, Buonasorte G, Cappetti G, Fiordelisi A (2000) Recent deep exploration results at the margins of the Larderello Travale Geothermal Field. Proceedings of the 2000 World Geothermal Congress, Kyushu-Tohoku, Japan, pp 965–970

  • Barton PB, Chou IM (1993) Refinement of the evaluation of the role of CO2 in modifying estimates of pressure of epithermal mineralization. Econ Geol 88:873–884

    Article  Google Scholar 

  • Belkin HE, De Vivo B, Lattanzi P (1983) Fluid inclusion studies on ore deposits of Tuscan Maremma, Italy. Mem Soc Geol Italy 25:273–284

    Google Scholar 

  • Bellani S, Brogi A, Lazzarotto A, Liotta D, Ranalli G (2004) Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow. J Volcan Geotherm Res 132:15–29. doi:10.1016/S0377-0273(03)00418-9

    Article  Google Scholar 

  • Benvenuti M, Lattanzi P, Morelli F, Pandeli E (1992) Mineralizzazioni ed aree geotermiche della Toscana meridionale. In: “Guide alle escursioni post-congresso”, 76a Riunione estiva Soc Geol Italy, Firenze 21–23 Settembre 1992, 333–385

  • Bertani R, Cappetti G (1995) Numerical simulation of the Monteverdi zone western border of the Larderello geothermal Field. World Geothermal Congress Proceedings, Florence, 1735–1740

  • Bertini G, Cameli GM, Costantini A, Decandia FA, Di Filippo M, Dini I, Elter FM, Lazzarotto A, Liotta D, Pandeli E, Sandrelli F, Toro B (1991) Struttura geologica fra i monti di Campiglia e Rapolano Terme (Toscana meridionale): stato attuale delle conoscenze e problematiche. Studi Geol Camerti 1:155–178

  • Bertini G, Casini M, Gianelli G, Pandeli E (2006) Geological structure of a long-living geothermal system, Larderello, Italy. Terra Nova 18:163–169. doi:10.1111/j.1365-3121.2006.00676.x

    Article  Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O–NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Virginia Polytechnic Institute and State University press, Blacksburg, pp 117–130

    Google Scholar 

  • Bodnar RJ, Reynolds TJ, Kuehn CA (1985) Fluid-inclusion systematics in epithermal systems. In: Berger BR Bethke PM (eds) Geology and geochemistry of epithermal systems. Rev Econ Geol 2:73–97

  • Boiron MC, Cathelineau M, Ruggieri G, Jeanningros A, Gianelli G, Banks DA (2007) Active contact metamorphism and CO2–CH4 fluid production in the Larderello geothermal field (Italy) at depths between 2.3 and 4 km. Chem Geol 237:303–328. doi:10.1016/j.chemgeo.2006.06.028

    Article  Google Scholar 

  • Bossio A, Costantini A, Foresi LM, Lazzarotto A, Liotta D, Mazzanti R, Mazzei R, Salvatorini G, Sandrelli F (1995) Studi preliminari sul sollevamento della Toscana meridionale dopo il Pliocene medio. Studi Geol Camerti 1:87–91

    Google Scholar 

  • Boyce AJ, Fulignati P, Sbrana A (2003) Deep hydrothermal circulation in the granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. J Volcan Geotherm Res 126:243–262. doi:10.1016/S0377-0273(03)00150-1

    Article  Google Scholar 

  • Brogi A (2004) Miocene low-angle detachments and upper crustal megaboudinage in the Mt. Amiata geothermal area (Northern Apennines, Italy). Geodin Acta 17:375–387. doi:10.3166/ga.17.375-387

    Article  Google Scholar 

  • Brogi A, Lazzarotto A, Liotta D, Ranalli G, CROP18 Working Group (2005) Crustal structures in the geothermal areas of southern Tuscany (Italy): insights from the CROP 18 deep seismic reflection lines. J Volcan Geotherm Res 148:60–80. doi:10.1016/j.jvolgeores.2005.03.014

    Article  Google Scholar 

  • Brunet C, Monié P, Jolivet L, Cadet JP (2000) Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany. Tectonophysics 321:127–155. doi:10.1016/S0040-1951(00)00067-6

    Article  Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028. doi:10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2

    Article  Google Scholar 

  • Calamai A, Cataldi R, Squarci P, Taffi L (1970) Geology, geophysics and hydrogeology of the Monte Amiata Geothermal Field. Geothermics 1:1–9

    Google Scholar 

  • Carella M, Fulignati P, Musumeci G, Sbrana A (2000) Metamorphic consequences of Neogene thermal anomaly in the northern Apennines (Radicondoli-Travale area, Larderello geothermal field, Italy). Geodin Acta 13:345–366. doi:10.1016/S0985-3111(00)01051-2

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (northern Apennines, Italy). Tectonophysics 238:295–315. doi:10.1016/0040-1951(94)90061-2

    Article  Google Scholar 

  • Carmignani L, Decandia FA, Disperati L, Fantozzi PL, Lazzarotto A, Liotta D, Oggiano G (1995) Relationships between the Sardinia-Corsica-Provençal Domain and the Northern Apennines. Terra Nova 7:128–137. doi:10.1111/j.1365-3121.1995.tb00681.x

    Article  Google Scholar 

  • Cathelineau M, Marignac C (1994) Use of fluid inclusions for a better understanding of intracontinental geothermal activities. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals: methods and applications. Virginia Polytechnic Institute and State University press, Blacksburg, pp 309–326

    Google Scholar 

  • Cathelineau M, Marignac C, Boiron MC, Gianelli G, Puxeddu M (1994) Evidence for Li-rich brines and early magmatic fluid–rock interaction in the Larderello geothermal system. Geochim Cosmochim Acta 58:1083–1099. doi:10.1016/0016-7037(94)90574-6

    Article  Google Scholar 

  • Cipriani C, Tanelli G (1983) Le risorse minerarie della Toscana: note storiche ed economiche. Accad Toscana Sci Lettere 48:241–283

    Google Scholar 

  • Clauser C, Villinger H (1990) Analysis of conductive heat transfer in a sedimentary basin, demonstrated for the Rheingraben. Geophys J Int 100:393–414. doi:10.1111/j.1365-246X.1990.tb00693.x

    Article  Google Scholar 

  • Conti P, Costantini A, Decandia FA, Elter FM, Gattiglio M, Lazzarotto A, Meccheri M, Pandeli E, Rau A, Sandrelli F, Tongiorgi M, Di Pisa A (1991) Structural frame of the Tuscan Paleozoic: a review. Boll Soc Geol Italy 100:523–541

    Google Scholar 

  • Corsini F, Morelli F, Tanelli G (1991) A polymetallic sulfide (Cu–Pb–Zn) assemblage from the Boccheggiano-Campiano (Tuscany) pyrite deposit: application of the stannite–sphalerite geothermometer. N Jb Min Monat 11:523–528

    Google Scholar 

  • Cortecci G, Lattanzi P, Tanelli G (1985) C- and O-isotope and fluid inclusion studies of carbonates from pyrite and polymetallic ore deposits and associated country rocks (southern Tuscany, Italy). Chem Geol 58:121–128. doi:10.1016/0009-2541(85)90184-6

    Article  Google Scholar 

  • Costantini A, Elter FM, Pandeli E, Pascucci V, Sandrelli F (2002) Geologia dell’area di Boccheggiano e Serrabottini (Colline Metallifere, Toscana meridionale). Boll Soc Geol Italy 121:35–49

    Google Scholar 

  • Crawford ML (1981) Phase equilibria in aqueous fluid inclusions. In: Hollister LS, Crawford ML (eds) Short course in fluid inclusions: application to petrology. Min Assoc Canada 6:75–100

  • Curewitz D, Karson JA (1997) Structural setting of hydro-thermal overfow: fracture permeability maintained by fault propagation and interaction. J Volcan Geotherm Res 79:149–168. doi:10.1016/S0377-0273(97)00027-9

    Article  Google Scholar 

  • D’Amore F, Bolognesi L (1994) Isotopic evidences for a magmatic contribution to fluids of the geothermal systems of Larderello, Italy and Geysers, California. Geothermics 23:21–32. doi:10.1016/0375-6505(94)90043-4

    Article  Google Scholar 

  • Dallai L, Magro G, Petrucci E, Ruggieri G (2005) Stable isotope and noble gas isotope composition of inclusion fluids from Larderello geothermal field (Italy): constraints to fluid origin and mixing processes. J Volcan Geotherm Res 148:152–164. doi:10.1016/j.jvolgeores.2005.03.019

    Article  Google Scholar 

  • Dallmeyer RD, Liotta D (1998) Extension, uplift of rocks and cooling ages in thinned crustal provinces: the Larderello geothermal area (inner northern Apennines, Italy). Geol Mag 135:193–202. doi:10.1017/S0016756898008309

    Article  Google Scholar 

  • Dini A, Gianelli G, Puxeddu M, Ruggieri G (2005) Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos 81:1–31. doi:10.1016/j.lithos.2004.09.002

    Article  Google Scholar 

  • Durney DW, Ramsay JG (1973) Incremental strains measured by syntectonic crystal growths. In: De Jong KA, Scholten R (eds) Gravity and tectonics. Wiley, New York, pp 67–96

    Google Scholar 

  • Elter FM, Pandeli E (1990) Alpine and Hercynian Orogenic phases in the basement rocks of the Northern Apennines (Larderello Geothermal field, Southern Tuscany, Italy). Eclogae Geol Helv 83:241–264

    Google Scholar 

  • Elter P, Giglia G, Tongiorgi M, Trevisan L (1975) Tensional and compressional areas in the recent (Tortonian to Present) evolution of the Northern Appennines. Boll Geof Teor Appl 17:3–18

    Google Scholar 

  • Finetti I (2006) Basic regional crustal setting and superimposed local pluton-intrusion-related tectonics in the Larderello-M Amiata geothermal province, from integrated CROP seismic data. Boll Soc Geol Italy 125:117–146

    Google Scholar 

  • Foley JE, Toksuz MN, Batini F (1992) Inversion of teleseismic travel time residuals in velocity structure in the Larderello geothermal field, Italy. Geophys Res Lett 19:5–8. doi:10.1029/91GL01182

    Article  Google Scholar 

  • Friedman I, O’Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M (ed) Data of geochemistry, US Geological Survey Professional Paper 440-KK, 6th edn, Reston, VA

  • Furuya S, Aoki M, Gotoh H, Takenaka T (2000) Takigami geothermal system, northeastern Kyushu, Japan. Geothermics 29:191–211. doi:10.1016/S0375-6505(99)00059-0

    Article  Google Scholar 

  • Gianelli G, Ruggieri G (2002) Evidence of a contact metamorphic aureole with high-temperature metasomatism in the deepest part of the active geothermal field of Larderello, Italy. Geothermics 31:443–474. doi:10.1016/S0375-6505(02)00006-8

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals: SEPM (Society for Sedimentary Geology), Short Course Notes. 31, p 199

  • Hedenquist JW, Henley RW (1985) The importance of CO2 on freezing point measurements of fluid inclusions: evidence from active geothermal systems and implications for epithermal ore deposition. Econ Geol 80:1379–1406

    Article  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527. doi:10.1038/370519a0

    Article  Google Scholar 

  • Jolivet L, Dubois R, Fournier R, Goffe’ B, Michard A, Jourdan C (1990) Ductile extension in alpine Corsica. Geology 18:1007–1010. doi:10.1130/0091-7613(1990)018<1007:DEIAC>2.3.CO;2

    Article  Google Scholar 

  • Jolivet L, Faccenna C, Goffè B, Mattei M, Brunet C, Rossetti F, Cadet JP, Funiciello R, Theye T, Storti F, D’Agostino N (1998) Mid-crustal shear zones in postorogenic extension: example from the Northern Apennines case. J Geophys Res 103:12123–12150. doi:10.1029/97JB03616

    Article  Google Scholar 

  • Kloditz O, Clauser C (1998) Numerical simulation of flow and heat transfer in fractured crystalline rocks: application to the hot dry rock site in Rosemanowes (U.K.). Geothermics 27:1–23. doi:10.1016/S0375-6505(97)00021-7

    Article  Google Scholar 

  • Laurenzi MA (2003) 40Ar–39Ar mineral ages of samples from the deep wells of the Larderello–Travale geothermal field. In: Proceedings, structures in the continental crust and geothermal resources conference, Abstracts vol, Siena

  • Lavecchia G, Minelli G, Pialli G (1984) L’ Appennino umbro-marchigiano: tettonica distensiva ed ipotesi di sismogenesi. Boll Soc Geol Italy 103:467–476

    Google Scholar 

  • Lazzarotto A (1967) Geologia della zona compresa fra l’ alta Valle del Fiume Cornia ed il Torrente Pavone (Prov. di Pisa e Grosseto). Mem Soc Geol Italy 6:151–197

    Google Scholar 

  • Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol (Amst) 270:75–88. doi:10.1016/S0022-1694(02)00281-0

    Article  Google Scholar 

  • Lüschen E (2005) Relationship between recent heat flow and seismic properties: some notes from crustal research in Germany. J Volcan Geotherm Res 148:31–45. doi:10.1016/j.jvolgeores.2005.04.012

    Article  Google Scholar 

  • Magro G, Ruggieri G, Gianelli G, Bellani S, Scandiffio G (2003) Helium isotopes in paleofluids and presentday fluids in the Larderello geothermal field: constraints on the heat source. J Geophys Res 108:1–12. doi:10.1029/2001JB001590

    Article  Google Scholar 

  • Minissale A, Magro G, Martinelli G, Vaselli O, Tassi GF (2000) Fluid geochemical transect in the Northern Apennines (central-northern Italy): fluid genesis and migration and tectonic implications. Tectonophysics 319:199–222. doi:10.1016/S0040-1951(00)00031-7

    Article  Google Scholar 

  • Muraoka H, Uchida T, Sasada M, Yagi M, Akaku K, Sasaki M, Yaasukawa K, Miyazaki SI, Doi N, Saito S, Sato K, Tanaka S (1998) Deep Geothermal Resources Survey Program: igneous, metamorphic and hydrothermal processes in a well encountering 500°C at 2,618 m depth, Kakkonda, Japan. Geothermics 27:507–534. doi:10.1016/S0375-6505(98)00031-5

    Article  Google Scholar 

  • Musumeci G, Bocini L, Corsi R (2002) Alpine tectonothermal evolution of the Tuscan Metamorphic Complex in the Larderello geothermal field (northern Apennines, Italy). J Geol Soc Lond 159:443–456. doi:10.1144/0016-764901-084

    Article  Google Scholar 

  • O’Sullivan M, Pruess K, Lippmann M (2001) State of the art of geothermal reservoir simulation. Geothermics 30:395–429. doi:10.1016/S0375-6505(01)00005-0

    Article  Google Scholar 

  • Pandeli E, Gianelli G, Puxeddu M, Elter FM (1994) The Paleozoic basement of the Northern Apennines: stratigraphy, tectono-metamorphic evolution and alpine hydrothermal processes. Mem Soc Geol Italy 48:627–654

    Google Scholar 

  • Panichi C, Scandiffio G, Baccarin F (1995) Variation of geochemical parameters induced by reinjection in the Larderello area. Proceeding World Geothermal Congress, Florence, Italy, 1995, pp 1845–1849

  • Roedder E (1984) Fluid inclusions. Rev Mineral 12:644

    Google Scholar 

  • Rossetti F, Faccenna C, Brunet C, Funiciello R, Jolivet L, Tecce F (1999) Syn- versus post-orogenic extension at Giglio Island (Northern Tyrrhenian sea, Tuscany). Tectonophysics 304:71–93. doi:10.1016/S0040-1951(98)00304-7

    Article  Google Scholar 

  • Rossetti F, Balsamo F, Villa IM, Boujbauenne M, Faccenna C, Funiciello R (2008) Pliocene–Pleistocene HT/LP metamorphism during multiple granitic intrusions in the southern branch of the Larderello geothermal field (southern Tuscany, Italy). J Geol Soc Lond 165:247–262. doi:10.1144/0016-76492006-132

    Article  Google Scholar 

  • Rowland JV, Sibson RH (2004) Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic zone, New Zealand. Geofluids 4:259–283. doi:10.1111/j.1468-8123.2004.00091.x

    Article  Google Scholar 

  • Ruggieri G, Cathelineau M, Boiron MC, Marignac C (1999) Boiling and fluid mixing in the chlorite zone of the Larderello geothermal system. Chem Geol 154:237–256. doi:10.1016/S0009-2541(98)00134-X

    Article  Google Scholar 

  • Scandiffio G, Panichi C, Valenti M (1995) Geochemical evolution of fluids in the Larderello geothermal field. Proceedings world geothermal congress, Florence, Italy, pp 1839–1843

  • Serri G, Innocenti F, Manetti P (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene Quaternary magmatism of central Italy. Tectonophysics 223:117–147. doi:10.1016/0040-1951(93)90161-C

    Article  Google Scholar 

  • Sharp ZD (1995) Oxygen isotope geochemistry of the Al2SiO5 polymorphs. Am J Sci 295:1058–1076

    Google Scholar 

  • Simmons SF, Browne PRL (1997) Saline fluid inclusions in sphalerite from the Broadlands Ohaaki geothermal system: a coincidental trapping of fluids being boiled toward dryness. Econ Geol 92:485–489

    Article  Google Scholar 

  • Tanelli G (1983) Mineralizzazioni metallifere e minerogenesi della Toscana. Mem Soc Geol Italy 25:91–109

    Google Scholar 

  • Villa IM, Ruggieri G, Puxeddu M, Bertini G (2006) Geochronology and isotope transport systematics in a subsurface granite from the Larderello–Travale geothermal system (Italy). J Volcan Geotherm Res 152:20–50. doi:10.1016/j.jvolgeores.2005.09.011

    Article  Google Scholar 

  • Werner D, Kahle HG (1980) A geophysical study of the Rhinegraben, kinematics and geothermics. Geophys J R Astron Soc 62:617–629

    Google Scholar 

  • Younker LW, Kasameyer PW, Tewhey JD (1982) Geological, geophysical, and thermal characteristics of the Salton Sea Geothermal Field, California. J Volcan Geotherm Res 12:221–258. doi:10.1016/0377-0273(82)90028-2

    Article  Google Scholar 

  • Zhang YG, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl–KCl–CaCl2–H2O using synthetic fluid inclusions. Chem Geol 64:335–350. doi:10.1016/0009-2541(87)90012-X

    Article  Google Scholar 

  • Zhang X, Sanderson DJ (1996) Numerical modelling of the effects of fault slip on fluid flow around extensional faults. J Struct Geol 95:109–119. doi:10.1016/0191-8141(95)00086-S

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to H. A. Gilg and J. M. Diaz; their criticism and constructive comments helped us to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Liotta.

Appendix

Appendix

Microthermometry of fluid inclusions was carried out on ~100-μm thick, double polished wafers at the Dipartimento di Scienze della Terra (University of Pisa) and at Istituto di Geoscienze e Georisorse (CNR) in Pisa using Linkam THMS 600 heating–freezing stages. The stages were calibrated by means of synthetic fluid inclusions containing H2O with critical density and H2O–CO2 fluids. Accuracy was estimated in the order of ±0.2°C during freezing below 10°C, and ±2.0°C when heating up to 350°C.

Oxygen isotopes analyses on quartz separates were measured at Istituto di Geoscienze e Georisorse (CNR) in Pisa, by conventional laser fluorination (Sharp 1995). Pure F2 desorbed from K3NiF7 salt (Asprey 1976) was used as reagent, and O2 was the analyte measured with a Finnigan Delta XP MS via zeolite 13X molecular sieve. Quartz aliquots of 1.5–2 mg were separated and laser fluorinated, and the measurements were at least duplicated and averaged out with analytical precision of ±0.15‰(1σ) or better. Precision and accuracy of the analyses were monitored by measuring aliquots of QMS in-house quartz standard (δ18O = 14.05‰), yielding an average δ18O = 14.06‰, 1σ = ±0.12‰. No data correction were necessary for the results, which are reported in the standard per mil (‰) notation. All δ18O values are relative to the international reference standard VSMOW (Vienna Standard Mean for Oceanic Water according to I.A.E.A.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liotta, D., Ruggieri, G., Brogi, A. et al. Migration of geothermal fluids in extensional terrains: the ore deposits of the Boccheggiano-Montieri area (southern Tuscany, Italy). Int J Earth Sci (Geol Rundsch) 99, 623–644 (2010). https://doi.org/10.1007/s00531-008-0411-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0411-3

Keywords

Navigation