Skip to main content

Advertisement

Log in

Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Marine Quaternary trench and slope sediments were sampled along the margin of the Southern Andes, Chile between 36° and 40°S. Major and trace element contents indicate only minor influence of weathering and transport fractionation. The whole rock composition of the sediments is similar to the average rock of the Cretaceous to Holocene magmatic arc of this section of the southern volcanic zone. Sr, Nd, and Pb isotope composition of the sediments also resembles closely the average composition of the magmatic arc. The contribution of compositionally distinct Palaeozoic crust, which makes up most of the volume of the forearc, is ~0–20% crustal Sr, Nd, and Pb according to the isotope record of the trench and slope sediments. Input of sediments from the continent into the subduction system was dominated by detritus from the magmatic arc at least for the last 20 My on the basis of the Oligocene to Holocene exhumation history of the margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171:329–334. doi:10.1016/S0012-821X(99)00173-9

    Article  Google Scholar 

  • Augustsson C, Münker C, Bahlburg H, Fanning M (2006) Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. J Geol Soc Lond 163:983–995. doi:10.1144/0016-76492005-149

    Article  Google Scholar 

  • Bandel K, Quinzio-Sinn LA (1999) Paleozoic trace fossils from the Cordillera Costal near Concepción, connected to a review of the Paleozoic history of central Chile. Neues Jahrb Geol Palaeontol Abh 211:171–200

    Google Scholar 

  • Behrmann JH, Kopf A (2001) Balance of tectonically accreted and subducted sediment at the Chile Triple Junction. Int J Earth Sci 90:753–768. doi:10.1007/s005310000172

    Article  Google Scholar 

  • Berg K, Baumann A (1985) Plutonic and metasedimentary rocks from the Coastal range of northern Chile: Rb–Sr and U–Pb isotopic systematics. Earth Planet Sci Lett 75:101–115. doi:10.1016/0012-821X(85)90093-7

    Article  Google Scholar 

  • Blumberg S, Lamy F, Arz HW, Echtler HP, Wiedicke M, Haug GH, Oncken O (2008) Turbiditic trench deposits at the South-Chilean active margin: a Pleistocene–Holocene record of climate and tectonics. Earth Planet Sci Lett. doi:10.1016/j.epsl.2008.02.007

  • Bock B, Bahlburg H, Wörner G, Zimmermann U (2000) Tracing crustal evolution in the southern Central Andes from Late Precambrian to Permian using Nd and Pb isotopes. J Geol 108:515–535. doi:10.1086/314422

    Article  Google Scholar 

  • Burke WH, Denison RE, Hetherington EA, Koepnick RB, Nelson HF, Otto JB (1982) Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10:516–519. doi:10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2

    Article  Google Scholar 

  • Caminos R, Llambías EJ, Rapela CW, Párica CA (1988) Late Paleozoic-Early Triassic magmatic activity of Argentina and the significance of new Rb–Sr ages from northern Patagonia. J S Am Earth Sci 1:137–145. doi:10.1016/0895-9811(88)90031-4

    Article  Google Scholar 

  • Costa F, Singer BS (2002) Evolution of Holocene dacite and compositionally zoned magma, volcan San Pedro, southern volcanic zone Chile. J Petrol 43:1571–1593. doi:10.1093/petrology/43.8.1571

    Article  Google Scholar 

  • Davidson JP, Ferguson KM, Colucci MT, Dungan MA (1988) The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S Chile: multicomponent sources and open system evolution. Contrib Miner Petrol 100:429–445. doi:10.1007/BF00371373

    Article  Google Scholar 

  • Déruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. J Volcanol Geotherm Res 14:77–124. doi:10.1016/0377-0273(82)90044-0

    Article  Google Scholar 

  • Duhart P, McDonough M, Muñoz J, Martin M, Villeneuve M (2001) El complejo metamórfico Bahía Mansa en la Cordillera Costa del centro-sur de Chile (39°30′–42°00′S): geocronología K–Ar, 40Ar/39Ar y U–Pb: implicancias en la evolución del margen sur-occidental de Gondwana. Rev Geol Chil 28:179–208

    Google Scholar 

  • Dungan MA, Wulff A, Thompson R (2001) Eruptive stratigraphy of the Tatara-San Pedro complex, 36°S, southern volcanic zone Chilean Andes: reconstruction method and implications for magma evolution at long-lived arc volcanic centers. J Petrol 42:555–626. doi:10.1093/petrology/42.3.555

    Article  Google Scholar 

  • Dulski P (2001) Reference materials for geochemical studies: new analytical data by ICP-MS and critical discussion of reference values. Geostand Newsl 25:87–125. doi:10.1111/j.1751-908X.2001.tb00790.x

    Article  Google Scholar 

  • Feeley TC, Dungan MA, Frey FA (1998) Geochemical constraints on the origin of mafic and silicic magmas at Cordón El Guadal, Tatara-San Pedro Complex, central Chile. Contrib Miner Petrol 131:394–411. doi:10.1007/s004100050400

    Article  Google Scholar 

  • Ferraris P (1981) Hoja Los Angeles-Angol, mapas geológicos preliminaries de Chile, escala 1:250000. Instituto de Investigaciones Geológicas de Chile (inédito), Santiago de Chile, Chile, p 56

    Google Scholar 

  • França AB, Milani EJ, Schneider RL, López P, López MJ, Suárez S, Santa Ana H, Wiens F, Ferreiro O, Rossello EA, Bianucci HA, Flores RFA, Vistalli MC, Fernández-Seveso F, Fuenzalida RP, Muñoz N (1995) Phanerozoic correlation in Southern South America. In: Tankard AJ, Suárez Soruco R, Welsink HJ (Eds) Petroleum basins of South America. AAPG Memoir 62, pp 129–161

  • Ferguson KM, Dungan MA, Davidson JP, Colucci MT (1992) The Tatara-San Pedro volcano 36°S, Chile: a chemically variable dominantly mafic magmatic system. J Petrol 33:1–43

    Google Scholar 

  • Frey FA, Gerlach DC, Hickey RL, López-Escobar L, Munizaga-Villavicencio F (1984) Petrogenesis of the Laguna De Maule volcanic complex, Chile 36°S. Contrib Miner Petrol 88:133–149. doi:10.1007/BF00371418

    Article  Google Scholar 

  • Gerlach DC, Frey FA, Moreno-Roa H, López-Escobar L (1988) Recent volcanism in the Puyehue—Cordon Caulle region, Southern Andes, Chile 40.5°S: petrogenesis of evolved lavas. J Petrol 29:333–382

    Google Scholar 

  • Glodny J, Lohrmann J, Echtler H, Gräfe K, Seifert W, Collao S, Figueroa O (2005) Internal dynamics of a paleoaccretionary wedge: insights from combined isotope tectonochronology and sandbox modeling of the South-Central Chilean forearc. Earth Planet Sci Lett 231:23–39. doi:10.1016/j.epsl.2004.12.014

    Article  Google Scholar 

  • Glodny J, Echtler H, Figueroa O, Franz G, Gräfe K, Kemnitz H, Kramer W, Krawczyk C, Lohrmann J, Lucassen F, Melnick D, Rosenau M, Seifert W (2006) Long-term geological evolution and mass flow balance of the South-Central Andes. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Science Series, vol 1. Springer, Berlin, pp 401–428

    Google Scholar 

  • Glodny J, Gräfe K, Echtler H, Rosenau M (2008) Mesozoic to Quaternary continental margin dynamics in South-Central Chile (36–42°S): the apatite and zircon fission track perspective. Int J Earth Sci 97:1271–1291. Geol Rundsch. doi:10.1007/s00531-007-0203-1

    Google Scholar 

  • González Bonorino G (1991) Late Paleozoic orogeny in the north-western Gondwana continental margin, western Argentina and Chile. J S Am Earth Sci 4:131–144. doi:10.1016/0895-9811(91)90023-E

    Article  Google Scholar 

  • Grunder AL, Mahood GA (1988) Physical and chemical models of zoned silicic magmas: the Loma Seca tuff and Calabazos caldera, Southern Andes. J Petrol 29:831–867

    Google Scholar 

  • Hervé F (1988) Late Paleozoic subduction and accretion in southern Chile. Episodes 11:183–188

    Google Scholar 

  • Hervé F, Munizaga F, Parada MA, Brook M, Pankhurst RJ, Snelling NJ, Drake R (1988) Granitoids of the Coast Range of central Chile: geochronology and geologic setting. J S Am Earth Sci 1:185–194. doi:10.1016/0895-9811(88)90036-3

    Article  Google Scholar 

  • Hickey RL, Gerlach DC, Frey FA (1984) Geochemical variations in volcanic rocks from central-south Chile. In: Harmon RS, Barreiro B (eds) Andean magmatism: chemical and isotopic constraints. Shiva, Cheshire, pp 72–95

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34°–41°S): trace element and isotope evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res B91:5963–5983. doi:10.1029/JB091iB06p05963

    Article  Google Scholar 

  • Hickey-Vargas R, Moreno-Roa H, López-Escobar L, Frey FA (1989) Geochemical variations in Andean basaltic and silicic magmas from the Villarica-Lanin volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization, and crustal assimilation. Contrib Miner Petrol 103:361–386. doi:10.1007/BF00402922

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contribution to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455–489. doi:10.1007/BF00372365

    Article  Google Scholar 

  • Jicha BR, Singer BS, Beard BL, Johnson CM, Moreno-Roa H, Naranjo JA (2007) Rapid magma ascent and generation of 230Th excesses in the lower crust at Puyehue-Cordón Caulle southern volcanic zone Chile. Earth Planet Sci Lett 255:229–242. doi:10.1016/j.epsl.2006.12.017

    Article  Google Scholar 

  • Kay SM, Godoy E, Kurtz A (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. GSA Bull 117:67–88

    Article  Google Scholar 

  • Kilian R, Behrmann JH (2003) Geochemical constraints on the sources of Southern Chile trench sediments and their recycling in arc magmas of the Southern Andes. J Geol Soc Lond 160:57–70. doi:10.1144/0016-764901-143

    Article  Google Scholar 

  • Kukowski N, Oncken O (2006) Subduction erosion—the ‘normal’ mode of fore-arc material transfer along the Chilean margin? In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Science Series, vol 1. Springer, Berlin, pp 217–236

    Google Scholar 

  • Lamy F, Hebbeln D, Röhl U, Wefer G (2001) Holocene rainfall variability in Southern Chile: a marine record of latitudinal shifts of Southern westerlies. Earth Planet Sci Lett 185:369–382. doi:10.1016/S0012-821X(00)00381-2

    Article  Google Scholar 

  • Lara LE, Rodriguez C, Moreno H, Perez De Arce C (2001) K–Ar geochronology and geochemistry of the upper Pliocene–Pleistocene volcanism of the southern Andes (39–42°S). Rev Geol Chil 28:67–90

    Google Scholar 

  • Lindquist KG, Engle K, Stahlke D, Price E (2004) Global topography and bathymetry grid improves research efforts. Eos Trans AGU 85:186

    Google Scholar 

  • Lohrmann J, Kukowski N, Krawczyk CM, Oncken O, Sick C, Sobiesiak M, Rietbrock A (2006) Subduction channel evolution in brittle forearc wedges—a combined study with scaled sandbox experiments, seismological and reflection seismic data and geological field evidence. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Science Series, vol 1. Springer, Berlin, pp 237–262

    Google Scholar 

  • López-Escobar L (1984) Petrology and chemistry of volcanic rocks of the southern Andes. In: Harmon RS, Barreiro B (eds) Andean magmatism: chemical and isotopic constraints. Shiva, Cheshire, pp 47–71

    Google Scholar 

  • López-Escobar L, Vergara MM (1997) Eocene–Miocene longitudinal depression and quaternary volcanism in the southern Andes, Chile (33–42.5°S): a geochemical comparison. Rev Geol Chil 24:227–244

    Google Scholar 

  • López-Escobar L, Vergara MM, Frey FA (1981) Petrology and geochemistry of lavas from Antuco volcano—a basaltic volcano of the southern Andes (37°25′). J Volcanol Geotherm Res 11:329–352. doi:10.1016/0377-0273(81)90030-5

    Article  Google Scholar 

  • López-Escobar L, Parada MA, Moreno H, Frey FA, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes southern Andes (41°00′–41°30′): comparative study. Rev Geol Chil 19:211–226

    Google Scholar 

  • López-Escobar L, Parada MA, Hickey-Vargas R, Frey FA, Kempton PD, Moreno-Roa H (1995) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-Ofqui fault zone Chile (41°–42°S): contrasting origin of andesitic and basaltic magma in the southern volcanic zone of the Andes. Contrib Mineral Petrol 119:345–361. doi:10.1007/BF00286934

    Article  Google Scholar 

  • López-Gamundi OR, Rossello EA (1998) Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin—Ventana fold belt (Argentina) and Karoo basin- Cape foldbelt (South Africa) revisited. Geol Rundsch 86:819–834. doi:10.1007/s005310050179

    Article  Google Scholar 

  • Lucassen F, Franz G, Thirlwall MF, Mezger K (1999) Crustal recycling of metamorphic basement: Late Paleozoic granites of the Chilean Coast Range and Precordillera at 22°S. J Petrol 40:1527–1551. doi:10.1093/petrology/40.10.1527

    Article  Google Scholar 

  • Lucassen F, Trumbull R, Franz G, Creixell C, Vasquez P, Romer RL, Figueroa O (2004) Distinguishing crustal recycling and juvenile additions at active continental margins: the Paleozoic to Recent compositional evolution of the Chilean Pacific margin (36–41°S). J S Am Earth Sci 17:103–119. doi:10.1016/j.jsames.2004.04.002

    Article  Google Scholar 

  • Martin MW, Kato TT, Rodríguez C, Godoy E, Duhart P, McDonough M, Campos A (1999) Evolution of the late Paleozoic accretionary complex and overlying forearc–magmatic arc, south central Chile (38°–41°S): constraints for the tectonic setting along the southwestern margin of Gondwana. Tectonics 18:582–605. doi:10.1029/1999TC900021

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050. doi:10.1016/0016-7037(90)90269-Q

    Article  Google Scholar 

  • Melnick D, Echtler H (2006) Inversion of forearc basins in south central Chile caused by rapid glacial age trench fill. Geology 34:709–712. doi:10.1130/G22440.1

    Article  Google Scholar 

  • Mix AC, Tiedemann R, Blum P, The Shipboard Scientists (2003) Proceedings of the Ocean Drilling Program, Initial Reports, vol 202

  • Muñoz JB, Stern CR (1988) The Quaternary volcanic belt of the southern continental margin of South America: traverse structural and petrochemical variations across the segment 38°–39°S. J S Am Earth Sci 1:147–161. doi:10.1016/0895-9811(88)90032-6

    Article  Google Scholar 

  • Muñoz J, Troncoso R, Duhart P, Crignola P, Farmer L, Stern CR (2000) The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in plate convergence rate. Rev Geol Chil 27:177–203

    Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534. doi:10.1016/0016-7037(84)90408-3

    Article  Google Scholar 

  • Notsu K, López-Escobar L, Onuma N (1987) Along-arc variation of Sr-isotope composition in volcanic rocks from the southern Andes (33°–55°S). Geochem J 21:307–313

    Google Scholar 

  • Pankhurst RJ, Weaver SD, Hervé F, Larrondo P (1999) Mesozoic–Cenozoic evolution of the North Patagonian Batholith in Aysén, southern Chile. J Geol Soc 156:673–694. doi:10.1144/gsjgs.156.4.0673

    Article  Google Scholar 

  • Plank T, Langmuir CH (1998) The geochemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394. doi:10.1016/S0009-2541(97)00150-2

    Article  Google Scholar 

  • Raitzsch M, Völker D, Heubeck C (2007) Neogene sedimentary and mass-wasting processes on the continental margin off south-central Chile inferred from dredge samples. Mar Geol 244:166–183. doi:10.1016/j.margeo.2007.06.007

    Article  Google Scholar 

  • Reichert C, Schreckenberger B (2002) Cruise Report SO-161, Legs 2 and 3, SPOC. p 142

  • SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 (edición 2003), Santiago de Chile

  • Shreve LR, Cloos M (1986) Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res 91:10229–10245. doi:10.1029/JB091iB10p10229

    Article  Google Scholar 

  • Sigmarsson O, Chmele J, Morris J, Lopez-Escobar L (2002) Origin of 226Ra–230Th disequilibria in arc lavas from southern Chile and implications for magma transfer time. Earth Planet Sci Lett 196:189–196. doi:10.1016/S0012-821X(01)00611-2

    Article  Google Scholar 

  • Somoza R (1998) Updated Nazca (Farallon)-South America relative motions during the last 40 My: implications for mountain building in the Central Andean region. J S Am Earth Sci 11:211–215. doi:10.1016/S0895-9811(98)00012-1

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc Lond Spec Publ 42: 312–345

  • Tebbens SF, Cande S (1997) Southeast Pacific tectonic evolution from Early Oligocene to Present. J Geophys Res 102:12035–12059. doi:10.1029/96JB02581

    Article  Google Scholar 

  • Thomson SN (2002) Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42° and 46°S: an appraisal based on fission-track results from the transpressional intra-arc Liquin˜e-Ofqui fault zone. Geol Soc Am Bull 114:1159–1173

    Google Scholar 

  • Thornburg TM, Kulm LD (1987) Sedimentation in the Chile Trench: depositional morphologies, lithofacies, and stratigraphy. Geol Soc Am Bull 98:33–52. doi:10.1130/0016-7606(1987)98<33:SITCTD>2.0.CO;2

    Article  Google Scholar 

  • Tormey DR, Frey FA, López-Escobar L (1995) Geochemistry of the active Azufre–Planchon–Peteroa volcanic complex, Chile (31°15′S): evidence for multiple sources and processes in a Cordilleran arc magmatic system. J Petrol 36:265–298

    Google Scholar 

  • Varela R, Teixeira W, Cingolani C, Dalla Salda L (1994) Edad rubidio-estroncio de granitoids de Aluminé—Rahue, Cordillera Norpatagonica, Neuquén, Argentina. 7. Congreso Geológico Chileno, Concpeción. Actas II:1254–1258

    Google Scholar 

  • Völker D, Wiedicke M, Ladage S, Gaedicke C, Reichert C, Rauch K, Kramer W, Heubeck C (2006) Latitudinal variation in sedimentary processes in the Peru–Chile Trench off Central Chile. In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes—active subduction orogeny. Frontiers in Earth Science Series, vol 1. Springer, Berlin, pp 193–216

    Google Scholar 

  • Völker D, Reichel T, Wiedicke M, Heubeck C (2008) Turbidites deposited on Southern Central Chilean seamounts: evidence for energetic turbidity currents. Mar Geol 251:15–31. doi:10.1016/j.margeo.2008.01.008

    Article  Google Scholar 

  • Wiedicke M et al (2002) Cruise Report SO161-5, SPOC. p 210, BGR-Nr 11241/02

  • Willner A, Hervé F, Massonne H-J (2000) Mineral chemistry and pressure–temperature evolution of two contrasting high-pressure low-temperature belts in the Chonos archipelago, Southern Chile. J Petrol 41:309–330. doi:10.1093/petrology/41.3.309

    Article  Google Scholar 

  • Willner AP, Glodny J, Gerya TV, Godoy E, Massonne H-J (2004) A counterclockwise PTt-path of high pressure–low temperature rocks from the Coastal Cordillera accretionary complex of South Central Chile: constraints for the earliest stage of subduction mass flow. Lithos 75:283–310. doi:10.1016/j.lithos.2004.03.002

    Article  Google Scholar 

Download references

Acknowledgments

We thank Maren Lewerenz for performing XRF analyses at the Technische Universität Berlin, Peter Dulski and Birgit Zander for ICP-MS analyses at GFZ-Potsdam, Cathrin Schulz for support in the GFZ radiogenic isotope laboratory, Rosemarie Geffe at TU-Berlin for polishing the Figures. We thank Rolf L. Romer for reading a previous draft of the manuscript and Christoph Breitkreuz and Diego Morata for their journal reviews, which all improved the manuscript. This study was funded by DFG (Deutsche Forschungsgemeinschaft) in the frame of Sonderforschungsbereich 267 ‘Deformation processes in the Andes’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Lucassen.

Appendix

Appendix

Analytical methods

The initial sample size was ca. 50 g, which is representative even for the sand fraction. Semi-solidified rocks from the dredge samples were carefully disaggregated in a PE-bag using a hammer. All samples where transferred into Teflon beakers, washed several times in the ultrasonic in ultra clean water and dried. The water was preserved (with few drops HCl added). The dried samples were ground in an agate mill. Major elements were determined by XRF at TU-Berlin. Trace elements were determined by ICP-MS at GFZ-Potsdam (for the procedure and reproducibility of international standards see Dulski 2001).

For Nd, Pb, and Sr isotope analyses by TIMS at GFZ Potsdam, ~200 mg of sample were weighted into Savillex beakers. Prior to dissolution in HF–HNO3 mixture, the samples were treated with warm 1 N HCl followed by washing in ultra clean water in order to remove possible organic carbonates. All isotope ratios were determined using TIMS. Nd and Sr isotope ratios were measured using dynamic multi-collection on a MAT 262 mass spectrometer and on a VG 54 Sector mass spectrometer at the GFZ-Potsdam, respectively. Nd isotopic ratios were normalized to 146Nd/144Nd = 0.7219, Sr isotopic ratios to 86Sr/88Sr = 0.1194. During the analytical work at GFZ-Potsdam the NBS 987 Sr standard yielded 87Sr/86Sr = 0.710265 ± 28 (2σ; n = 47) and the La Jolla Nd standard yielded 143Nd/144Nd = 0.511850 ± 8 (2σ, n = 46). Pb isotope ratios were measured at GFZ-Potsdam using static multi-collection on a MAT 262 mass spectrometer at controlled temperatures between 1,220 and 1,250°C. The 2σ reproducibility of all Pb isotope ratios of the NBS SRM 981 standard (measured ratios, uncorrected for fractionation; 206Pb/204Pb = 16.906 ± 10, 207Pb/204Pb = 14.454 ± 10, 208Pb/204Pb = 36.583 ± 20, n = 28) is better than 0.1% and a 2σ error of 0.1% is assumed for the measured samples considering the uncertainty of correction for mass fractionation. Instrumental mass-fractionation has been corrected using 0.1% per amu (atomic mass unit) on the base of the NBS SRM 981 values. Procedural blanks were <30 pg for Pb, <50 pg Nd and <100 pg for Sr. No blank corrections have been applied to the measured ratios because blank contribution was insignificant in comparison to the amount of the respective elements in the sample.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucassen, F., Wiedicke, M. & Franz, G. Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S). Int J Earth Sci (Geol Rundsch) 99, 687–701 (2010). https://doi.org/10.1007/s00531-008-0410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0410-4

Keywords

Navigation