Skip to main content
Log in

Dioritic intrusions of the Slavkovský les (Kaiserwald), Western Bohemia: their origin and significance in late Variscan granitoid magmatism

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Mafic and intermediate intrusions occur in the Slavkovský les as dykes, sills and minor tabular bodies emplaced in metamorphic rocks or enclosed in late Variscan granites near the SW contact of the Western Krušné hory/Erzgebirge granite pluton. They are similar in composition and textures to the redwitzites defined in NE Bavaria. Single zircon Pb-evaporation analyses constrain the age of a quartz monzodiorite at 323.4 ± 4.4 Ma and of a granodiorite at 326.1 ± 5.6 Ma. The PT range of magma crystallization is estimated at ~1.4–2.2 kbar and ~730–870°C and it accords with a shallow intrusion level of late Variscan granites but provides lower crystallization temperatures compared to the Bavarian redwitzites. We explain the heterogeneous composition of dioritic intrusions in the Slavkovský les by mixing between mafic and felsic magmas with a minor effect of fractional crystallization. Increased K, Ba, Rb, Sr and REE contents compared to tholeiitic basalts suggest that the parental mafic magma was probably produced by melting of a metasomatised mantle, the melts being close to lamprophyre or alkali basalt composition. Diorites and granodiorites originated from mixed magmas derived by addition of about 25–35 and 50 vol.%, respectively, of the acid end-member (granite) to lamprophyre or alkali-basalt magma. Our data stress an important role of mafic magmas in the origin of late Variscan granitoids in NW Bohemian Massif and emphasize the effect of mantle metasomatism on the origin of K-rich mafic igneous rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Basaltic Volcanism Study Project (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press Inc., New York, pp 1–1286

    Google Scholar 

  • Blecha V, Kachlík V, Štemprok M, Gaždová R (2004) Magnetic and gravity survey of amphibole-biotite diorite body on the Uhlířský vrch, SE of Sokolov town (Karlovy Vary Pluton, Slavkovský les Mts). Geosci Res Rep for 2003, Czech Geol Survey, pp 126–128 (in Czech with English abstract)

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteoritic studies. In: Henderson P (ed) Rare earth elements geochemistry. Elsevier, Amsterdam, pp 63–114

    Google Scholar 

  • Cháb J, Stráník Z, Eliáš M (2007) Geological map of the Czech Republic 1:500 000. Czech Geoogical Survey, Praha

    Google Scholar 

  • Cocherie A, Guerrot C, Rossi P (1992) Single-zircon dating by step-wise Pb evaporation: comparison with other geochronological techniques applied to the Hercynian granites of Corsica. Chem Geol 101:131–141

    Google Scholar 

  • Fiala F (1961a) Annual report on the geological study in the northern part of the Císařský (Slavkovský) les. Unpublished report, Archive of the Czech Geological Survey, Prague, pp 1–80 (in Czech)

  • Fiala F (1961b) Geological study of the southwestern part of the Císařský (Slavkovský) les. Geosci Res Rep 1960:19–20 (in Czech)

    Google Scholar 

  • Fiala F (1968) Granitoids of the Slavkovský (Císařský) les Mountains. Sb Geol Věd Geol 14:93–160 (in Czech)

    Google Scholar 

  • Förster HJ, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40:1613–1645. doi:10.1093/petrology/40.11.1613

    Article  Google Scholar 

  • Fourcade S, Allègre JC (1981) Trace elements behavior in granite genesis: a case study. The calc-alkaline pluton association from Querigut Complex (Pyrénées, France). Contrib Mineral Petrol 76:177–195. doi:10.1007/BF00371958

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of Central Europe. Geol Soc Am Spec Pap 230:67–97

    Google Scholar 

  • Fraser KJ, Hawkesworth CJ, Erlank AJ, Mitchel RH, Scott-Smith BH (1985) Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth Planet Sci Lett 76:57–70. doi:10.1016/0012-821X(85)90148-7

    Article  Google Scholar 

  • Freiberger R, Hecht L, Cuney M, Morteani G (2001) Secondary Ca–Al silicates in plutonic rocks: implications for their cooling history. Contrib Mineral Petrol 141:415–429

    Google Scholar 

  • Gerdes A, Wörner G, Finger F (2000) Hybrids, magma mixing and enriched mantle melts in post-collisional Variscan granitoids: the Rastenberg Pluton, Austria. Geol Soc Lond Spec Pub 179:415–431

    Article  Google Scholar 

  • Guo F, Fan W, Wang Y, Zhang M (2004) Origin of early Cretaceous calc-alkaline lamprophyres from the Sulu orogen in eastern China: implications for enrichment processes beneath continental collisional belt. Lithos 78:291–305. doi:10.1016/j.lithos.2004.05.001

    Article  Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Harrison TM, Watson EB (1984) The behaviour of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477. doi:10.1016/0016-7037(84)90403-4

    Article  Google Scholar 

  • Holl PK, Drach VV, Müller-Sohnius D, Köhler H (1989) Caledonian ages in Variscan rocks: Rb–Sr and Sm–Nd isotope variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics 157:179–194. doi:10.1016/0040-1951(89)90349-1

    Article  Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi:10.1007/BF00310910

    Article  Google Scholar 

  • Hollister LS, Grisson GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(34):231–239

    Google Scholar 

  • Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sb Geol Věd Lozisk Geol 31:5–26

    Google Scholar 

  • Janečka J, Absolonová E, Bernard J, Jarchovský T, Lomozová V, Pavlú D, Píšová J, Roos E, Strnad J, Štemprok M (1973) Final report on the geological study of the Sn–W deposits of the Bohemian massif. Unpublished report, Archive of the Czech Geological Survey Praha, pp 1–335 (in Czech)

  • Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. doi:10.1093/petrology/41.4.511

    Article  Google Scholar 

  • Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259. doi:10.1093/petrology/egl013

    Article  Google Scholar 

  • Jargalan S, Fujimaki H, Ohba T (2007) Petrologic characteristics and Rb–Sr age dating of lamprophyre dikes of Tsagaan Tsahir Uul gold deposit, Mongolia. J Mineral Petrol Sci 102:163–173. doi:10.2465/jmps.060322b

    Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841. doi:10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2

    Article  Google Scholar 

  • Kachlík V (1993) The evidence for Late Variscan nappe thrusting of the Mariánské Lázně Complex over the Saxothuringian terrane (West Bohemia). J Czech Geol Soc 38(1–2):43–58

    Google Scholar 

  • Kachlík V (1997) The Kladská unit. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. Sb Geol Věd Geol, vol 47, pp 15–23

  • Kelemen PB, Hanghoj K, Greene AR (2004) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 593–659

  • Kempe U, Bombach K, Matukov D, Schlothauer T, Hutschenreuter J, Wolf D, Segeev S (2004) Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for Hercynian granite magmatism and Sn mineralization in the Eibenstock granite, Erzgebirge, Germany: considering effects of zircon alteration. Miner Depos 39:646–669

    Google Scholar 

  • Keskin M (2002) FC-Modeler: a Microsoft Excel spreadsheet program for modeling Rayleigh fractionation vectors in closed magmatic systems. Comp Geosci 28(8):919–928. doi:10.1016/S0098-3004(02)00010-9

    Article  Google Scholar 

  • Kober B (1986) Whole-grain evaporation for 207Pb/206Pb age investigations on single zircons using a double-filament thermal ion source. Contrib Mineral Petrol 93:481–490. doi:10.1007/BF00371718

    Article  Google Scholar 

  • Kober B (1987) Single-zircon evaporation combined with Pb+ emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry, and implications to zirconology. Contrib Mineral Petrol 96:63–71. doi:10.1007/BF00375526

    Article  Google Scholar 

  • Kováříková P, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2005) Petrochemical comparison of redwitzites from the NW part of the Bohemian massif. Geosci Res Rep 2004:103–106 (in Czech)

    Google Scholar 

  • Kováříková P, Siebel W, Jelínek E, Štemprok M, Kachlík V, Holub FV, Blecha V (2007) Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): tracing the mantle component in Late Variscan intrusions. Chem Erde 67(2):151–174. doi:10.1016/j.chemer.2007.04.002

    Article  Google Scholar 

  • Kratochvíl F (1959) Report on geological mapping in the Císařský les. Unpublished report, Archive of the Czech Geological Survey, pp 1–25 (in Czech)

  • Lange H, Tischendorf G, Pälchen W, Klemm I, Ossenkopf W (1972) Zur Petrographie und Geochemie der Granite des Erzgebirges. Geologie 21:457–493

    Google Scholar 

  • Laube G (1876) Geologie des böhmischen Erzgebirges. Archiv Naturwiss Landesforschung Böhmen. Prag Teil 1:1–208

    Google Scholar 

  • LeMaitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sørensen H, Streckeisen A, Wooley AR, Zanettin B (1989) A classification of igneous rocks and glassary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous rocks. Blackwell, Oxford, pp 1–193

    Google Scholar 

  • Ludwig K (1999) Isoplot/Ex, version 206: a geochronological tool-kit for Microsoft Excel. Berkeley Geochronology Center (Spec Pub), vol 1a, pp 1–49

  • Mendes AC, Dias G (2004) Mantle-like Sr-Nd isotope composition of Fe–K subalkaline granites: the Peneda-Geres Variscan massif (NW Iberian Peninsula). Terra Nova 16:109–115. doi:10.1111/j.1365-3121.2004.00537.x

    Article  Google Scholar 

  • Miessler C, Propach G (1987) Genese der Redwitzite von Marktredwitz. Fortschr Mineral 65(1):137

    Google Scholar 

  • Mísař Z, Dudek A, Havlena V, Weiss J (1983) Geology of ČSSR I, Bohemian massif. State pedagogical publisher, Praha, pp 1–333 (in Czech)

    Google Scholar 

  • Najman K, Novák JK, Kozubek P (1988) New reserves of tin-tungsten ores at the Hub and Schnöd stocks. Geol Průzk 30:129–133 (in Czech)

    Google Scholar 

  • Nelson DR (1992) Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithosphere 28:403–420. doi:10.1016/0024-4937(92)90016-R

    Google Scholar 

  • Polanský J, Racková H, Šťovíčková N (1973) Detail gravity mapping with scale of 1: 25,000: Slavkovský les Mountains with parts of Cheb and Sokolov basins. Research report, Geofyzika np, Brno, pp 1–211 (in Czech)

  • René M (2000) Petrogenesis of the Variscan granites in the western part of the Bohemian Massif. Acta Mont A 15(116):67–83

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, UK, pp 1–325

    Google Scholar 

  • Romer RL, Thomas R, Stein HJ (2007) Dating multiply overprinted Sn-mineralized granites—examples from the Erzgebirge, Germany. Miner Depos 42:337–359. doi:10.1007/s00126-006-0114-2

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Mineral Petrol 110:304–310. doi:10.1007/BF00310745

    Article  Google Scholar 

  • Schovánek P, Straka J, Breiter K, Hradecký P, Kopecký L Jr (2001) Geological map. Sheet 11–23 Sokolov. Czech Geological Survey, Praha

    Google Scholar 

  • Siebel W (1993) Der Leuchtenberger Granit und seine assoziierten magmatischen Gesteine: Zeitliche und stoffliche Entwicklungsprozesse im Verlauf der Enstehung des Nordoberpfalz-Plutons. PhD thesis Ruprechts Karls Universität, Heidelberg, pp 1–305

  • Siebel W (1994) Inferences about magma mixing and thermal events from isotopic variations in redwitzites near the KTB site. KTB report 94-3, pp 157–164

  • Siebel W, Höhndorf A, Wendt I (1995) Origin of late Variscan granitoids from NE Bavaria, Germany, exemplified by REE and Nd isotope systematics. Chem Geol 125:249–270. doi:10.1016/0009-2541(95)00083-X

    Article  Google Scholar 

  • Siebel W, Trzebski R, Stettner G, Hecht L, Casten U, Höhndorf A, Müller P (1997) Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept. Geol Rundsch Suppl 86:45–63. doi:10.1007/PL00014665

    Article  Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites in NE Bavaria. Int J Earth Sci 92:36–53. doi:10.1007/s00531-003-0348-5

    Article  Google Scholar 

  • Solgadi F, Moyen J-F, Vanderhaeghe O, Sawyer EW, Reisberg L (2007) The role of crustal anatexis and mantle-derived magmas in the genesis of synorogenic Hercynian granites of the Livradois area, French Massif Central. Can Mineral 45:581–606. doi:10.2113/gscanmin.45.3.581

    Article  Google Scholar 

  • Spiegel W, Propach G (1991) Die Genese basischer und intermediäter Intrusivgesteine im Westteil des Vorderen Bayerischen Waldes. Geol Bavarica 96:159–178

    Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Štemprok M (1959) Report of the revision of geological documentation in the shaft Barbora (shaft 3 and 4) of the Jáchymov mines in Horní Slavkov. Archive of the Czech Geological Survey, Prague, pp 1–18 (in Czech)

    Google Scholar 

  • Štemprok M (1971) Geochemistry of granites of the Slavkovský les. Unpublished report, Archive of the Czech Geological Survey, Prague, pp 1–56 (in Czech)

  • Štemprok M (1986) Petrology and geochemistry of the Czechoslovak part of the Krušné hory Mts. granite pluton. Sbor Geol Věd Lož Min 27:111–156

    Google Scholar 

  • Taubald H (2000) 207Pb/206Pb zircon ages, geochemical and isotope (Sr, Nd, O) data from Redwitzites in the Fichtelgebirge, NE Bavaria. Münchner Geol Hefte A 28:53–59

    Google Scholar 

  • Taylor SR, McLennan SM (1986) The chemical composition of the Archaean crust. In: Dawson JB et al (eds) The nature of the lower continental crust. Geol Soc Lond (Spec Pub), vol 24, pp 173–178

  • Tomek Č, Dvořáková V, Vrána S (1994) Geological intepretation of the 9HR and 503 M seismis profiles in Western Bohemia. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. Sb Geol Věd Geol, vol 47, pp 43–50

  • Troll G (1968) Gliederung der redwitzitischen Gesteine Bayerns nach Stoff- und Gefügemerkmalen. Teil I (ed) Die Typlokalitaet von Marktredwitz in Oberfranken. Bayerische Akad Wiss Abh 133, München, pp 1–86

  • Trzebski R, Behr HJ, Conrad W (1997) Subsurface distribution and tectonic setting of the late-Variscan granites in the northwestern Bohemian Massif. Geol Rundsch Suppl 86:64–78. doi:10.1007/PL00014666

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in variety of crustal magma types. Earth Planet Sci Lett 61:346–358. doi:10.1016/0012-821X(82)90065-6

    Article  Google Scholar 

  • Watson EB, Harrison TM (1984) Accessory minerals and the geochemical evolution of crustal magmatic systems: a summary and prospectus of experimental approaches. Phys Earth Planet Inter 35:19–30. doi:10.1016/0031-9201(84)90031-1

    Article  Google Scholar 

  • Willmann K (1920) Die Redwitzite, eine neue Gruppe von granitischen Lamprophyren. Dtsch Geol Ges 71(1/2):1–33

    Google Scholar 

  • Yavuz F (1999) A revised program for microprobe-derived amphibole analyses using the IMA rules. Comput Geosci 25:909–927. doi:10.1016/S0098-3004(99)00055-2

    Article  Google Scholar 

  • Zoubek V (ed) (1963) The annotation to the general geological map of CSSR, scale 1:200000 M-33-XIII Karlovy Vary. CSAV, Praha

Download references

Acknowledgments

The work was done under the financial support of the projects 205/02/0458, 205/05/0156 of the Grant Agency of the Czech Republic and Scientific Project of Ministry of Education, Youth and Sports ČR No. 0021620855. David Dolejš is gratefully thanked for helpful discussion. We appreciate the comments of three anonymous reviewers who significantly improved the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Kováříková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kováříková, P., Siebel, W., Jelínek, E. et al. Dioritic intrusions of the Slavkovský les (Kaiserwald), Western Bohemia: their origin and significance in late Variscan granitoid magmatism. Int J Earth Sci (Geol Rundsch) 99, 545–565 (2010). https://doi.org/10.1007/s00531-008-0406-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0406-0

Keywords

Navigation