Skip to main content
Log in

Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Approximately 500-Ma-old orthogneisses are widespread in the eastern part of the Variscan belt and are commonly interpreted to have intruded mica-schist series of assumed Neoproterozoic age. New SHRIMP zircon ages of quartzofeldspathic metavolcanogenic rocks of the mica schist series in the eastern part of the Karkonosze-Izera Massif (SW Poland) indicate that they are late Cambrian/early Ordovician rather than Neoproterozoic in age, based on the zircon age spectra distributed mainly between ca. 500 and 660 Ma (with a few Proterozoic inherited minimum ages of ca. 970 and 1,825 Ma). Younger zircon dates, dispersed between ca. 412 and 464 Ma, are interpreted as a result of Pb-loss likely caused by subsequent metamorphism. Consequently, the felsic metavolcanogenic rocks appear to be roughly contemporaneous with the intrusion of ca. 500-Ma-old orthogneiss protoliths (with the pooled concordia age of 487 ± 8 Ma interpreted as the best approximation of the protolith intrusive age). Field relationships, petrological and geochemical features of the felsic and mafic rocks studied support a model in which the accompanying mica schist series are not the original country rocks to the ca. 500 Ma granite intrusions, and indicate that their recent close proximity is the result of tectonic juxtaposition. However, both the mica schists enclosing the bimodal metavolcanic rocks, and the orthogneisses, are interpreted to represent a Cambro-Ordovician passive continental margin sequence being part of the Saxothuringian domain. They are tectonically overlain to the east by HP/T metamorphic units, comprising MORB-type metaigneous rocks, and delineating a tectonic suture separating the Saxothuringian block in the west from an assumed continental block (Tepla-Barrandian) to the south-east.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aleksandrowski P, Mazur S (2002) Collage tectonics in the northeasternmost part of the Variscan belt: the Sudetes, Bohemian Massif. In: Winchester J, Pharaoh T, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society of London Special Publication, London, pp 237–277

    Google Scholar 

  • Bendl J, Patočka F (1995) The 87Rb-86Sr isotope geochemistry of the metamorphosed bimodal volcanic association of the Rychorý Mts crystalline complex, West Sudetes, Bohemian Massif. Geol Sudetica 29:3–18

    Google Scholar 

  • Bendl J, Patočka F, Pivec E (1997) The 87Rb-86Sr isotope geochemistry of the blueschists and greenschists metavolcanics of the Rychorý Mts crystalline complex, West Sudetes, Bohemian Massif. Geol Sudetica 30:3–20

    Google Scholar 

  • Berg G (1923) Die Gesteine des Isergebirges. Jb Preuss Geol L-A 43:125–168

    Google Scholar 

  • Berg G (1935) Erläuterungen zur Geologische Karte von Preussen und benachbarten Deutschen Ländern, Blatt Marklissa. Lief. 333. Preussischen Geologischen Landesanstalt, Berlin, pp 1–40

    Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170. doi:10.1016/S0009-2541(03)00165-7

    Article  Google Scholar 

  • Borkowska M, Hameurt J, Vidal P (1980) Origin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geol Pol 30:121–146

    Google Scholar 

  • Cháb J, Vrána S (1979) Crossite-actinolite amphiboles of the Krkonoše-Jizera crystalline complex and their geological significance. Vest Ustr Ust Geol 54:143–150

    Google Scholar 

  • Chaloupský J (1965) Metamorphic development of the Krkonoše crystalline complex. Krystalinikum 3:31–54

    Google Scholar 

  • Chaloupský J, Červenka J, Jetel J, Králik F, Libalová J, Píchovál E, Pokorný J, Pošmourný K, Sekyra J, Shrbený O, Šalanský K, Šrámek J, Váci J (1989) Geology of the Krkonoše and Jizerské hory Mts (in Czech; English summary). Ustřední Ústav Geologický, Praha, pp 1–288

  • Chlupáč I (1993) Stratigraphic evaluation of some metamorphic units in the N part of the Bohemian Massif. Neues Jahrb Geol Palaontol Abh 188:363–388

    Google Scholar 

  • Chlupáč I (1997) Palaeozoic ichnofossils in phyllites near Železný Brod, northern Bohemia. J Czech Geol Soc 42:75–94

    Google Scholar 

  • Chlupáč I, Hladil J (1992) New Devonian occurrences in the Ještĕd Mts, North Bohemia. Čas Miner Geol 37:185–191

    Google Scholar 

  • Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180. doi:10.1046/j.1365-3121.2000.00290.x

    Article  Google Scholar 

  • Domečka K (1970) Pre-Variscan granitoids of the West Sudeten (in Czech; English summary). Sb Geol Ved řada G18:161–191

    Google Scholar 

  • Dostal J, Patočka F, Pin C (2001) Middle/late Cambrian intracontinental rifting in the central West Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of the bimodal metavolcanic rocks. Geol J 36:1–17. doi:10.1002/gj.872

    Article  Google Scholar 

  • Duthou JL, Couturie JP, Mierzejewski MP, Pin C (1991) Next dating of granite sample from the Karkonosze Mountains using Rb-Sr total rock isochrone method (in Polish with English summary). Przegl Geol 36:75–79

    Google Scholar 

  • Ebert H (1943) Des Granitische Grundgebirge der östlichen Lausitz, Preisschr Fürstl. Jablonowskischen Ges 1–58

  • Edel JB, Weber K (1995) Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geol Rundsch 84:412–432. doi:10.1007/s005310050015

    Article  Google Scholar 

  • Floyd PA, Winchester JA, Ciesielczuk J, Lewandowska A, Szczepański J, Turniak K (1996) Geochemistry of early Palaeozoic amphibolites from the Orlica-Śnieżnik dome, Bohemian Massif: petrogenesis and palaeotectonic aspects. Geol Rundsch 85:225–238. doi:10.1007/BF02422230

    Article  Google Scholar 

  • Franke W, Żelaźniewicz A (2002) Structure and evolution of the Bohemian Arc. In: Winchester J, Pharaoh T, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society of London Special Publications, London, pp 279–293

    Google Scholar 

  • Friedl G, Finger F, McNaughton NJ, Fletcher IR (2000) Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28:1035–1038. doi:10.1130/0091-7613(2000)28<1035:DTAOTS>2.0.CO;2

    Article  Google Scholar 

  • Friedl G, Finger F, Paquette JL, von Quadt A, McNaughton NJ, Fletcher IR (2004) Pre-Variscan geological events in the Austrian part of the Bohemian Massif deduced from U–Pb zircon ages. Int J Earth Sci 93:802–823. doi:10.1007/s00531-004-0420-9

    Article  Google Scholar 

  • Furnes H, Kryza R, Muszyński A, Pin C, Garmann LB (1994) Geochemical evidence for progressive, rift-related early Paleozoic volcanism in the western Sudetes. J Geol Soc London 151:91–109. doi:10.1144/gsjgs.151.1.0091

    Article  Google Scholar 

  • Gehmlich M, Linnemann U, Tichomirowa M, Lützner H, Bombach K (1997) Die Bestimmung des Sedimentationsalters cadomischer Krustenfragmente im Saxothuringikum durch die Einzzelzircon—Evaporatiosmethode. Terra Nostra 97(5):46–49

    Google Scholar 

  • Green TH (1980) Island arc and continent-building magmatism—a review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics 63:367–385. doi:10.1016/0040-1951(80)90121-3

    Article  Google Scholar 

  • Guiraud M, Burg JP (1984) Mineralogical and petrological study of a blueschist metatuff from the Železný Brod crystalline complex, Czechoslovakia. Neues Jahrb Miner Abh 149:1–12

    Google Scholar 

  • Gunia T (1984) Microfossils from the quartzite schists in vicinity of Goszów, Śnieżnik Kłodzki Massif, Central Sudetes (in Polish with English summary). Geol Sudetica 8:47–62

    Google Scholar 

  • Hanson GH (1978) The application of trace elements to the petrogenesis of igneous rocks of granitic composition. Earth Planet Sci Lett 38:26–41. doi:10.1016/0012-821X(78)90124-3

    Article  Google Scholar 

  • Haskin LA, Haskin MA, Frey FA, Wildman TR (1968) Relative and absolute terrestrial abundances of the rare earths. In: Ahrens LH (ed) Origin and distribution of the elements, vol 1. Pergamon, Oxford, pp 889–911

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 80:297–314. doi:10.1016/0012-821X(88)90132-X

    Article  Google Scholar 

  • Holland TJB, Blundy JD (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi:10.1007/BF00310910

    Article  Google Scholar 

  • Inglis JD, Samson SD, D’Lemos RS, Miller BV (2005) Timing of Cadomian deformation and magmatism within La Hague NW France. J Geol Soc London 162:389–400. doi:10.1144/0016-764904-006

    Article  Google Scholar 

  • Kempe U, Götze J, Belyatsky BV, Plötze M (1997) Ce anomalies in monazite, fluorite and agate from Permian volcanics of the Saxothuringian (Germany). 10th Meeting of the Association of the European Geological Societies (MAEGS-10) Karlovy Vary. J Czech Geol Soc 42:38

    Google Scholar 

  • Korytowski A, Dörr W, Żelaźniewicz A (1993) U-Pb dating of (meta)granitoids in the NW Sudetes (Poland) and their bearing on tectono-stratigraphic correlation. Terra Abstr 5:331–332

    Google Scholar 

  • Kozdrój W, Cymerman Z, Kachlik V, Opletal M (2001) Karkonosze-Jizera Region. In: Kozdrój W, Krentz O, Opletal M (eds) Comments on the geological map Lausitz-Jizera-Karkonosze (without Cenozoic sediments) 1:100 000. Polish Geological Institute, Warsaw, pp 22–27

  • Kozłowski K (1974) Crystalline schists and leucogranites of the Stara Kamienica—Świeradów Zdrój Belt (in Polish with English summary). Geol Sudetica 9:7–100

    Google Scholar 

  • Kröner A, Hegner E, Hammer J, Haase G, Bielicki K-H, Krauss M, Eidam J (1994) Geochronology and Nd-Sm systematics of Lusatian granitoids: significance for the evolution of the Variscan orogen in east-central Europe. Geol Rundsch 83:357–376

    Google Scholar 

  • Kröner A, Hegner E, Jaeckel P (1997) Cambrian to Ordovician granitoid orthogneisses in the Polish and Czech West Sudetes Mts. and their geodynamic significance. Terra Nostra 97(11):67–68

    Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerské hory, Krkonoše Mountains and Orlice-Snĕžník Complex). Int J Earth Sci 90:304–324. doi:10.1007/s005310000139

    Article  Google Scholar 

  • Kryza R, Mazur S (1995) Contrasting metamorphic paths in the SE part of the Karkonosze-Izera Block (Western Sudetes, SW Poland). Neues Jahrb Miner Abh 169:157–192

    Google Scholar 

  • Kryza R, Pin C (1997) Cambrian/Ordovician magmatism in the Polish Sudetes: no evidence for subduction-related setting. EUG 9 Meeting, Strasbourg Terra Abstracts 144

  • Kryza R, Mazur S, Pin C (1995) Leszczyniec meta-igneous complex in the eastern part of the Karkonosze-Izera Block, Western Sudetes: trace element and Nd isotope study. Neues Jahrb Miner Abh 170:59–74

    Google Scholar 

  • Kryza R, Mazur S, Pin C (2003) Subduction- and non-subduction-related igneous rocks in the Central-European Variscides: geochemical and Nd isotope evidence for a composite origin of the Kłodzko Metamorphic Complex, Polish Sudetes. Geodin Acta 16(1):39–57. doi:10.1016/S0985-3111(02)00004-9

    Article  Google Scholar 

  • Kryza R, Mazur S, Oberc-Dziedzic T (2004) The Sudetic geological mosaic: insights into the root of the Variscan orogen. Przegl Geol 52:761–773

    Google Scholar 

  • Kryza R, Mazur S, Aleksandrowski P, Zalasiewicz J, Sergeev S, Presnyakov S (2007) Ordovician initial-rift volcanism in the Central European Variscides (the Kaczawa Mountains, Sudetes, SW Poland): evidence from SHRIMP dating of zircons. J Geol Soc London 164:1207–1215. doi:10.1144/0016-76492006-137

    Article  Google Scholar 

  • Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In: Gee DG, Pease VL (eds) The Neoproterozoic Timanide Orogen of Eastern Baltica. Geological Society, London, Memoirs 30:69–74

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms. Recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Blackwell, Oxford, pp 1–193

    Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirova M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geological Society of London Special Publications, London, pp 131–153

    Google Scholar 

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): Did Armorica ever leave pre-Pangean Gondwana?—U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705. doi:10.1007/s00531-004-0413-8

    Article  Google Scholar 

  • Ludwig KR (2005a) SQUID 1.12 A User’s manual. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, pp 1–22, http://www.bgc.org/klprogrammenu.html

  • Ludwig KR (2005b) User’s manual for ISOPLOT/Ex 3.22. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley, pp 1–71, http://www.bgc.org/klprogrammenu.html

  • Machowiak K, Armstrong R (2007) SHRIMP U-Pb zircon age from the Karkonosze granite. Miner Pol (Special Papers) 31:193–196

    Google Scholar 

  • Maluski H, Patočka F (1997) Geochemistry and 40Ar-39Ar geochronology of the mafic metavolcanic rocks from the Rýchory Mountains complex (west Sudetes, Bohemian Massif): paleotectonic significance. Geol Mag 134:703–716. doi:10.1017/S0016756897007498

    Article  Google Scholar 

  • Mazur S (1995) Structural and metamorphic evolution of the country rocks at the eastern contact of the Karkonosze granite in the southern Rudawy Janowickie Mts and Lasocki Range (in Polish with English summary). Geol Sudetica 29:31–98

    Google Scholar 

  • Mazur S, Aleksandrowski P (2001) The Tepla(?)/Saxothuringian suture in the Karkonosze-Izera Massif, Western Sudetes, Central European Variscides. Int J Earth Sci 90:341–360. doi:10.1007/s005310000146

    Article  Google Scholar 

  • Mazur S, Kryza R (1996) Superimposed compressional and extensional tectonics in the Karkonosze-Izera Block, NE Bohemian Massif. In: Oncken O, Jansen C (eds) Basement tectonics 11, Europe and other regions. Kluwer, Dordrecht, pp 51–66

    Google Scholar 

  • Mazur S, Aleksandrowski P, Kryza R, Oberc-Dziedzic T (2006) The Variscan Orogen in Poland. Geol Q 50:89–118

    Google Scholar 

  • Mierzejewski M, Oberc-Dziedzic T (1990) The Izera-Karkonosze block and its tectonic development (Sudetes, Poland). Neues Jahrb Geol Palaontol Abh 179:197–222

    Google Scholar 

  • Mochnacka K, Oberc-Dziedzic T, Mayer W, Pieczka A (2008) Ti remobilization and sulphide/sulphoarsenide mineralization in amphibolites: effect of granite intrusion activity (the Karkonosze-Izera Massif, SW Poland) (in press)

  • Nakamura N (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochim Cosmochim Acta 38:757–775. doi:10.1016/0016-7037(74)90149-5

    Article  Google Scholar 

  • Narębski W (1980) Paleotectonic setting of Circum-Karkonosze lower Paleozoic Spilite-Keratophyre Suites based on geochemistry of iron group elements. Ann Soc Geol Pol 50:3–25

    Google Scholar 

  • Nowak I, Żelaźniewicz A (2003) Basites in the northern part of the Izera-Karkonosze block: a magmatic record of early Devonian rifting of the Saxothuringian passive margin and its subsequent subduction. J Czech Geol Soc 48:96–97

    Google Scholar 

  • Nutman AP, Bennet VC, Friend CRL, Norman MD (1999) Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation. Contrib Mineral Petrol 137:364–388. doi:10.1007/s004100050556

    Article  Google Scholar 

  • Oberc-Dziedzic T (1988) The development of gneisses and granites in eastern part of the Izera crystalline unit in the light of the textural investigations (in Polish with English summary). Acta Univ Wratisl Pr Geol Mineral 13:1–184

    Google Scholar 

  • Oberc-Dziedzic T (2003) The Izera granites: an attempt of the reconstruction of predeformational history (in Polish with English summary). In: Ciężkowski W, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocław, pp 41–52

    Google Scholar 

  • Oberc-Dziedzic T, Pin C, Kryza R (2005) Early Palaeozoic crustal melting in an extensional setting: petrological and Sm-Nd evidence from the Izera granite-gneisses, Polish Sudetes. Int J Earth Sci 94:354–368. doi:10.1007/s00531-005-0507-y

    Article  Google Scholar 

  • Oliver GJH, Corfu F, Krough TE (1993) U-Pb ages from SW Poland: evidence for a Caledonian suture zone between Baltica and Gondwana. J Geol Soc London 150:355–369. doi:10.1144/gsjgs.150.2.0355

    Article  Google Scholar 

  • Patočka F, Hladil J (1998) An outline of the East Krkonoše Mts crystalline sequence geology. Geolines (Praha) 6:78–82

    Google Scholar 

  • Patočka F, Pivec E, Olivierová D (1996) Mineralogy and petrology of mafic blueschists from the Rýchory Mts crystalline complex (Western Sudetes, Bohemian Massif). Neues Jahrb Miner Abh 170:313–320

    Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks. Contrib Mineral Petrol 69:33–47. doi:10.1007/BF00375192

    Article  Google Scholar 

  • Pin C, Mierzejewski MP, Duthou JL (1987) Isochronous age Rb/Sr of Karkonosze granite from the quarry Szklarska Poręba Huta and significance of initial 87Sr/86Sr in this granite (in Polish with English summary). Przegl Geol 35:512–517

    Google Scholar 

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Kraft P, Nance D, Zulauf G (eds) The Geology of Peri-Gondwana: Avalonian-Cadomian terranes, adjoining cratons, and the Rheic Ocean, vol 423. Geological Society of America Special Publication, Boulder, pp 209–230

    Google Scholar 

  • Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, UK, pp 1–352

  • Samson SD, D’Lemos RS, Miller BV, Hamilton MA (2005) Neoproterozoic paleogeography of the Cadomia and Avalon terranes: constraints from detrital zircon U–Pb ages. J Geol Soc London 162:65–71. doi:10.1144/0016-764904-003

    Article  Google Scholar 

  • Seston R, Winchester JA, Piasecki MAJ, Crowley QG, Floyd PA (2000) A structural model for the western-central Sudetes: a deformed stack of Variscan thrust sheets. J Geol Soc London 157:1155–1167

    Article  Google Scholar 

  • Smulikowski W (1995) Evidence for glaucophane-schist facies metamorphism in the East Karkonosze complex, West Sudetes, Poland. Geol Rundsch 94:720–737. doi:10.1007/s005310050035

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221. doi:10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362. doi:10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Taylor SR, Mc Lennan SM (1985) The continental crust: its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks. Blackwell, Oxford, pp 1–312

    Google Scholar 

  • Teisseyre JH (1973) Metamorphic rocks of the Rudawy Janowickie and Lasocki Rangę (in Polish; English summary). Geol Sudetica 8:7–120

    Google Scholar 

  • Thompson RN (1982) British tertiary volcanic province. Scott J Geol 18:49–107

    Article  Google Scholar 

  • Wedepohl KH, Heinrichs H, Bridgewater D (1991) Chemical characteristics and genesis of the quartz-feldspathic rocks in the Archean crust of Greenland. Contrib Mineral Petrol 107:163–179. doi:10.1007/BF00310705

    Article  Google Scholar 

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newsl 19:1–23. doi:10.1111/j.1751-908X.1995.tb00147.x

    Article  Google Scholar 

  • Wieser T (1978) Glaucophane schists and associated rocks of Kopina Mt. (Lasocki range, Sudetes). Miner Pol 9:35–56

    Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: Applications in microanalytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

  • Wilson M (1993) Igneous petrogenesis. Harper Collins Academic, London, pp 1–466

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. doi:10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

  • Winchester JA, Floyd PA, Chocyk M, Horbowy K, Kozdrój W (1995) Geochemistry and tectonic environment of Ordovician meta-igneous rocks in the Rudawy Janowickie Complex, SW Poland. J Geol Soc London 152:105–115. doi:10.1144/gsjgs.152.1.0105

    Article  Google Scholar 

  • Żelaźniewicz A (1994) Ductile shear zones versus amphibolitized basic dikes within the Izera gneisses: fragment of a passive margin stretching from Lusatian to West Sudetes. Terra Abstr 3:108–111

    Google Scholar 

  • Żelaźniewicz A, Nowak I, Achramowicz S, Czapliński W (2003) The northern part of the Izera-Karkonosze block: a passive margin of the Saxothuringian Terrane (in Polish with English summary). In: Ciężkowski W, Wojewoda J, Żelaźniewicz A (eds) Sudety Zachodnie: od wendu do czwartorzędu. WIND, Wrocław, pp 17–32

    Google Scholar 

  • Żelaźniewicz A, Dörr W, Bylina P, Franke W, Haak U, Heinisch H, Schastok J, Grandmontagne K, Kulicki C (2004) The eastern continuation of the Cadomian Orogen: U-Pb zircon evidence from Saxothuringian granitoids in south-western Poland and the northern Czech Republic. Int J Earth Sci 93:773–781. doi:10.1007/s00531-004-0418-3

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out under the Project MNiI 5T12B 036 25 of the Polish National Research Committee (KBN). Additional support came from internal grants 1017/S/ING and 2022/W/ING of the University of Wrocław. One of the authors (R. Kryza) is involved in the IGCP 497 Project: “The Rheic Ocean: Its origin, evolution and correlatives” which deals with the geological background for the issues presented in this paper. Fruitful discussions with C. Pin are gratefully acknowledged. Pavla Štipska, Ulf Linnemann, Friedrich Finger and an anonymous reviewer are thanked for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Kryza.

Appendix: SHRIMP analytical procedure

Appendix: SHRIMP analytical procedure

In situ U–Pb analyses were performed on a SHRIMP-II at the Centre of Isotopic Research (CIR) at VSEGEI, applying a secondary electron multiplier in peak-jumping mode following the procedure described in Williams (1998) and Larionov et al. (2004). A primary beam of molecular oxygen was employed to ablate zircon in order to sputter secondary ions. The elliptical analytical spots had a size of ca. 27 × 20 μm, and the corresponding ion current was ca. 4 nA. The sputtered secondary ions were extracted at 10 kV. The 80 μm wide slit of the secondary ion source, in combination with a 100-μm multiplier slit, allowed mass-resolution of M/ΔM ≥ 5,000 (1% valley) so that all the possible isobaric interferences were resolved. One-minute rastering over a rectangular area of ca. 60 × 50 μm was employed before each analysis in order to remove the gold coating and possible surface common Pb contamination.

The following ion species were measured in sequence: 196(Zr2O)–204Pb–background (ca. 204 AMU) –206Pb–207Pb– 208Pb–238U–248ThO–254UO with integration time ranging from 2 to 20 s. Four cycles for each spot analysed were acquired. Each fifth measurement was carried out on the zircon Pb/U standard TEMORA (Black et al. 2003) with an accepted 206Pb/238U age of 416.75 ± 0.24 Ma. The 91500 zircon with a U concentration of 81.2 ppm and a 206Pb/238U age of 1062.4 ± 0.4 Ma (Wiedenbeck et al. 1995) was applied as a “U-concentration” standard. The collected results were then processed with the SQUID v1.12 (Ludwig 2005a) and ISOPLOT/Ex 3.22 (Ludwig 2005b) software, using the decay constants of Steiger and Jäger (1977). The common lead correction was done using measured 204Pb according to the model of Stacey and Kramers (1975).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberc-Dziedzic, T., Kryza, R., Mochnacka, K. et al. Ordovician passive continental margin magmatism in the Central-European Variscides: U–Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. Int J Earth Sci (Geol Rundsch) 99, 27–46 (2010). https://doi.org/10.1007/s00531-008-0382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0382-4

Keywords

Navigation