Skip to main content

Advertisement

Log in

Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Environmental and depositional changes across the Late Cenomanian oceanic anoxic event (OAE2) in the Sinai, Egypt, are examined based on biostratigraphy, mineralogy, δ13C values and phosphorus analyses. Comparison with the Pueblo, Colorado, stratotype section reveals the Whadi El Ghaib section as stratigraphically complete across the late Cenomanian–early Turonian. Foraminifera are dominated by high-stress planktic and benthic assemblages characterized by low diversity, low-oxygen and low-salinity tolerant species, which mark shallow-water oceanic dysoxic conditions during OAE2. Oyster biostromes suggest deposition occurred in less than 50 m depths in low-oxygen, brackish, and nutrient-rich waters. Their demise prior to the peak δ13C excursion is likely due to a rising sea-level. Characteristic OAE2 anoxic conditions reached this coastal region only at the end of the δ13C plateau in deeper waters near the end of the Cenomanian. Increased phosphorus accumulations before and after the δ13C excursion suggest higher oxic conditions and increased detrital input. Bulk-rock and clay mineralogy indicate humid climate conditions, increased continental runoff and a rising sea up to the first δ13C peak. Above this interval, a dryer and seasonally well-contrasted climate with intermittently dry conditions prevailed. These results reveal the globally synchronous δ13C shift, but delayed effects of OAE2 dependent on water depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Gawat GI (1999) Biostratigraphy and facies of the Turonian in west central Sinai, Egypt. Ann Geol Surv Egypt XXII:99–114

    Google Scholar 

  • Abed AM, Sadaqah R (1998) Role of upper Cretaceous oyster bioherms in the deposition and accumulation of high-grade phosphorites in central Jordan. J Sedim Res 68:1009–1020

    Google Scholar 

  • Adatte T, Stinnesbeck W, Keller G (1996) Lithostratigraphic and mineralogic correlations of near K/T boundary sediments northeastern Mexico: Implications for origin and nature of deposition. The Cretaceous-tertiary event and other catastrophes in Earth history, Boulder, Colorado. Geol Soc Am Spec Pap 307:211–226

    Google Scholar 

  • Andreu B (1989) Le Crétacé moyen de la transversale Agadir–Nador (Maroc): precisions stratigraphiques et sédimentologiques. Cretac Res 10:49–80. doi:10.1016/0195-6671(89)90029-3

    Article  Google Scholar 

  • Arthur MA, Dean WE, Pratt LM (1988) Geochemical and climatic effects of increased marine organic-carbon burial at the cenomanian turonian boundary. Nature 335:714–717. doi:10.1038/335714a0

    Article  Google Scholar 

  • Bauer J, Kuss J, Steuber T (2003) Sequence architecture and carbonate platform configuration (Late Cenomanian–Santonian), Sinai, Egypt. Sedimentology 50:387–414. doi:10.1046/j.1365-3091.2003.00549.x

    Article  Google Scholar 

  • Bauer J, Marzouk AM, Steuber T, Kuss J (2001) Lithostratigraphy and biostratigraphy of the Cenomanian–Santonian strata of Sinai, Egypt. Cretac Res 22:497–526. doi:10.1006/cres.2001.0270

    Article  Google Scholar 

  • Bodin S, Godet A, Follmi KB, Vermeulen J, Arnaud H, Strasser A et al (2006) The late Hauterivian Faraoni oceanic event in the western Tethys: evidence from phosphorus burial rates. Palaeogeogr Palaeoclimatol Palaeoecol 235:238–257. doi:10.1016/j.palaeo.2005.09.030

    Article  Google Scholar 

  • Chancellor GR, Kennedy WJ, Hancock JM (1994) Turonian ammonite faunas from Central Tunisia. Spec Pap Paleontol 50:1–118

    Google Scholar 

  • Chamley H (1989) Clay sedimentology. Sringer, Heidelberg, 623 p

  • Cherief OH, Al Rifaiy IA, Al Afify FI, Orabi OH (1989) Foraminiferal biostratigraphy and paleoecology of some Cenomanian–Turonian exposures in west central Sinai (Egypt). Rev Micropaleontol 31:243–262

    Google Scholar 

  • Cobban WA, Scott RW (1972) Stratigraphy and ammonite fauna of the graneros shale and greenhorn limestone near Pueblo, Colorado, Washington DC. US Geol Surv Prof Pap 645:1–108

    Google Scholar 

  • Corliss BH, Chen C (1988) Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology 16:716–719. doi:10.1130/0091-7613(1988)016<0716:MPONSD>2.3.CO;2

    Article  Google Scholar 

  • Davey SD, Jenkyns HC (1999) Carbon-isotope stratigraphy of shallow-water limestones and implications for the timing of Late Cretaceous sea-level rise and anoxic events (Cenomanian–Turonian of the peri-Adriatic carbonate platform, Croatia). Eclogae Geol Helv 92:163–170

    Google Scholar 

  • Dhondt AV, Malchus N, Boumaza L, Jaillard E (1999) Cretaceous oysters from North Africa: origin and distribution. Bull Soc Geol Fr 170(1):67–76

    Google Scholar 

  • Douglas RG, Savin SM (1978) Oxygen isotopic evidence for depth stratification of tertiary and Cretaceous planktic foraminifera. Mar Micropaleontol 3:175–196. doi:10.1016/0377-8398(78)90004-X

    Article  Google Scholar 

  • Eicher DL, Worstell P (1970) Cenomanian and Turonian foraminifera from the Great Plain, United States. Micropaleontol 16:269–324. doi:10.2307/1485079

    Article  Google Scholar 

  • Elder WP (1985) Biotic pattern across the Cenomanian–Turonian extinction boundary near Pueblo, Colorado. Pratt LA, Kauffman EG, Zelt FB (eds) Fine grained deposits and biofacies of the Cretaceous Western interior seaway: evidence of cyclic sedimentary processes. Field Trip Guidebook, vol 4. Society of Economic Paleontologists and Mineralogists, Tulsa, pp 157–169

  • El-Hedeny MM (2002) Cenomanian–Coniacian ammonites from west-central Sinai, Egypt, and their significance in biostratigraphy. N Jb Geol Palont Mh 7:397–425

    Google Scholar 

  • El-Sabbagh AM (2000) Stratigraphical and paleontological studies of the Upper Cretaceous succession in Gebel Nezzazat and Bir El-Markha areas, West-Central Sinai, Egypt. Unpublished PhD Thesis, Alexandria University, Fac Sci, Geol Dept: 209 p

  • Erba E, Tremolada F (2004) Nannofossil carbonate fluxes during the Early Cretaceous: phytoplankton response to nutrification episodes, atmospheric CO2, and anoxia. Paleoceanography 19:1–18. doi:10.1029/2003PA000884

    Article  Google Scholar 

  • Erbacher J, Thurow J, Littke R (1996) Evolution patterns of radiolaria and organic matter variations: a new approach to identify sea-level changes in mid-Cretaceous pelagic environments. Geology 24:499–502. doi:10.1130/0091-7613(1996)024<0499:EPORAO>2.3.CO;2

    Article  Google Scholar 

  • Gale AS, Hardenbohl J, Hathway B, Kennedy WJ, Young JR, Phansalkar V (2002) Global correlation of cenomanian (upper Cretaceous) sequences: evidence for Milankovitch control on sea level. Geology 30:291–294. doi:10.1130/0091-7613(2002)030<0291:GCOCUC>2.0.CO;2

    Article  Google Scholar 

  • Gertsch B, Keller G, Adatte T, Berner Z, Stueben D, Tantawy AAAM, El-Sabbagh, AM (2008) Middle and late Cenomanian Anoxia in the shallow shelf environment in NW Morocco (in preparation)

  • Ghorab MA (1961) Abnormal stratigraphic features in Ras Gharib Oilfield, Egypt. Proceedings of the Third Arab Petroleum Congress, Alexandria, Egypt, pp 1–10

    Google Scholar 

  • Godet A, Bodin S, Adatte T, Foellmi KB (2008) Clay mineral assemblages along the Northern Tethyan margin during the late Hauterivian–early Aptian: interactions beween climate change and carbonate platform evolution. Cretac Res (in press)

  • Hallam A (1992) Phanerozoic sea level changes. Columbia press, New York

    Google Scholar 

  • Haq BU, Hardenbol J (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167. doi:10.1126/science.235.4793.1156

    Article  Google Scholar 

  • Hart MB (1999) The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios 32:247–255. doi:10.1016/S0016-6995(99)80038-2

    Article  Google Scholar 

  • Hart MB (1980) A water depth model for the evolution of the planktonic foraminifera. Nature 286:252–254. doi:10.1038/286252a0

    Article  Google Scholar 

  • Hart MB, Leary PN (1989) The stratigraphic and paleogeographic setting of the late cenomanian anoxic event. J Geol Soc Lond 146:305–310. doi:10.1144/gsjgs.146.2.0305

    Article  Google Scholar 

  • Huber BT, Norris RD, McLeod KG (2002) Deep-sea paleotemperature record of extreme warmth during the Cretaceous. Geology 30:123–126. doi:10.1130/0091-7613(2002)030<0123:DSPROE>2.0.CO;2

    Article  Google Scholar 

  • Jarvis I, Gale AS, Jenkyns HC, Pearce MA (2006) Secular variation in late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma). Geol Mag 143:561–608. doi:10.1017/S0016756806002421

    Article  Google Scholar 

  • Jarvis I, Carson GA, Cooper MKE, Hart MB, Leary PN, Tocher BA et al (1988) Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) oceanic anoxic event. Cretac Res 9:3–103. doi:10.1016/0195-6671(88)90003-1

    Article  Google Scholar 

  • Jenkyns HC (1980) Cretaceous anoxic events, from continents to oceans. J Geol Soc Lond 137:171–181. doi:10.1144/gsjgs.137.2.0171

    Article  Google Scholar 

  • Jenkyns HC, Gale AS, Corfield RM (1994) Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance. Geol Mag 131:1–34

    Article  Google Scholar 

  • Kassab AS, Obaidalla NA (2001) Integrated biostratigraphy and inter-regional correlation of the Cenomanian–Turonian deposits of Wadi Feiran, Sinai, Egypt. Cretac Res 22:105–114. doi:10.1006/cres.2000.0240

    Article  Google Scholar 

  • Kassab AS (1999) Cenomanian–Turonian boundary in the Gulf of Suez region, Egypt: towards an inter-regional correlation, based on ammonites. Geological Society of Egypt. Spec Publ 2:61–98

    Google Scholar 

  • Kassab AI, Ismael MM (1996) Biostratigraphy of the upper Cretaceous sequence of the Gebel Musabaa Salama area, south–west Sinai, Egypt. Arab Gulf J Sci Res 14:63–78

    Google Scholar 

  • Kassab AI, Ismael MM (1994) Upper Cretaceous invertebrate fossils from the area northeast of Abu Zeneima, Sinai, Egypt. Neues Jahrb Geol Palaontol Abh 191:221–249

    Google Scholar 

  • Kassab AS (1991) Cenomanian–Coniacian biostratigraphy of the northern Eastern Desert, Egypt, based on ammonites. Newsl Stratigr 25:25–35

    Google Scholar 

  • Kassab AS (1985) Palaeontological and stratigraphical studies of Cretaceous sections in Wadi Tarfa and Wadi Qena, Eastern Desert, Egypt. PhD Thesis, Assiut University, Assiut: 221pp

  • Keller G, Tantawy AA, Berner Z, Adatte T, Chellai EH, Stueben D (2008) Oceanic events and biotic effects of the Cenomanian–Turonian anoxic event, Tarfaya Basin, Morocco. Cretaceous Res. doi:10.1016/j.cretres.2008.05.020

  • Keller G, Berner Z, Adatte T, Stueben D (2004) Cenomanian–Turonian and delta C-13, and delta O-18, sea level and salinity variations at Pueblo, Colorado. Palaeogeogr Palaeoclimatol Palaeoecol 211:19–43. doi:10.1016/j.palaeo.2004.04.003

    Article  Google Scholar 

  • Keller G, Pardo A (2004) Age and paleoenvironment of the Cenomanian–Turonian global stratotype section and point at Pueblo, Colorado. Mar Micropaleontol 51:95–128. doi:10.1016/j.marmicro.2003.08.004

    Article  Google Scholar 

  • Keller G, Han Q, Adatte T, Burns SJ (2001) Palaeoenvironment of the Cenomanian–Turonian transition at Eastbourne, England. Cretac Res 22:391–422. doi:10.1006/cres.2001.0264

    Article  Google Scholar 

  • Kolonic S, Wagner T, Forster A, Sinninghe Damste JS, Walsworth-Bell B, Erba E et al (2005) Black shale deposition on the northwest African Shelf during the Cenomanian/Turonian oceanic anoxic event: climate coupling and global organic carbon burial. Paleoceanography 20:1–18. doi:10.1029/2003PA000950

    Article  Google Scholar 

  • Kolonic S, Damste JSS, Bottcher ME, Kuypers MMM, Kuhnt W, Beckmann B et al (2002) Geochemical characterization of Cenomanian/Turonian black shales from the Tarfaya Basin (SW Morocco)—relationships between palaeoenvironmental conditions and early sulphurization of sedimentary organic matter. J Pet Geol 25:325–350. doi:10.1111/j.1747-5457.2002.tb00012.x

    Article  Google Scholar 

  • Kora M, Shahin A, Semiet A (1994) Biostratigraphy and paleoecology of some Cenomanian successions in the west-central Sinai, Egypt. Neues Jahrb Geol Palaontol Monatsh 1994:597–617

    Google Scholar 

  • Kora M, Hamama HH (1987) Biostratigraphy of the Cenomanian–Turonian successions of Gebel Gunna, southeastern Sinai, Egypt. Mansoura Faculty of Science. Bulletin 14:289–301

    Google Scholar 

  • Koutsoukos EAM, Leary PN, Hart MB (1990) Latest Cenomanian–earliest Turonian low-oxygen tolerant benthonic foraminifera: A case-study from the Sergipe basin (N.E. Brazil) and the western Anglo-Paris basin (southern England). Palaeogeogr Palaeoclimatol Palaeoecol 77:145–177. doi:10.1016/0031-0182(90)90130-Y

    Article  Google Scholar 

  • Kuhnt W, Nederbragt A, Leine L (1997) Cyclicity of Cenomanian–Turonian organic-carbon-rich sediments in the Tarfaya Atlantic Coastal Basin (Morocco). Cretac Res 18:587–601. doi:10.1006/cres.1997.0076

    Article  Google Scholar 

  • Kuhnt W, Luderer F, Nederbragt S, Thurow J, Wagner T (2004) Orbital-scale record of the late Cenomanian–Turonian oceanic anoxic event (OAE-2) in the Tarfaya Basin (Morocco). Int J Earth Sci 94:147–159. doi:10.1007/s00531-004-0440-5

    Article  Google Scholar 

  • Kübler B (1983) Dosage quantitatif des minéraux majeurs des roches sédimentaires par diffraction X. Cahiers de l’Institut de Géologie Series AX no. 1.1 and 1.2:1–13

  • Kübler B (1987) Cristallinité de l’illite: méthode normalisées de préparation de mesure, méthode automatique normalisées de mesure. Cahiers de l’Institut de Géologie

  • Kübler B, Jaboyedoff M (2000) Illite Cristallinity. CR Ac Sc Paris Sci de la terre et des planètes/Earth Planet Sci 331:75–89

    Google Scholar 

  • Leary PN, Peryt D (1991) The Late Cenomanian oceanic anoxic event in the western Anglo-Paris Basin and southeast Danish–Polish Trough: survival strategies of and recolonization by benthonic foraminifera. Hist Boil 5:321–335

    Article  Google Scholar 

  • Leckie RM (1987) Paleoecology of the mid-Cretaceous planktic foraminifera: a comparison of open ocean and epicontinental sea assemblages. Micropaleontology 33:164–176. doi:10.2307/1485491

    Article  Google Scholar 

  • Leckie RM, Yuretich RF, West LOL, Finkelstein D, Schmidt M (1998) Paleoceanography of the southwestern Interior Sea during the time of the Cenomanian–Turonian boundary (late Cretaceous). Dean WE, Arthur MA (eds) Concepts in sedimentology and paleontolgy, vol 6 SEPM, USA, pp 101–126

  • Leckie RM, Bralower TJ, Cashman R (2002) Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 17(3). doi:10.1029/2001PA000623

  • Luning S, Kolonic S, Belhadj EM, Belhadj Z, Cota L, Baric G et al (2004) Integrated depositional model for the Cenomanian–Turonian organic-rich strata in North Africa. Earth Sci Rev 64:51–117. doi:10.1016/S0012-8252(03)00039-4

    Article  Google Scholar 

  • Luning S, Marzouk AM, Morsi AM, Kuss J (1998) Sequence stratigraphy of the Upper Cretaceous of central-east Sinai, Egypt. Cretac Res 19:153–196. doi:10.1006/cres.1997.0104

    Article  Google Scholar 

  • Malchus N (1990) Revision der Kreide-Austern (Bivalvia: Pteriomorphia) Agyptens (Biostratigraphie, Systematik). Berliner Geowissenschaftliche Abh A125:231 p

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    Article  Google Scholar 

  • Meister C, Allzuma K, Mathey B (1992) Les ammonites du Niger (Afrique occidentale) et la Transgression Transsaharienne au cours du Cenomanien–Turonien. Geobios 25:55–100

    Article  Google Scholar 

  • Mort HP, Adatte T, Foellmi KB, Keller G, Steinmann P, Matera V et al (2007) Phosphorus and the roles of productivity and nutrient recycling during oceanic event 2. Geology 35:483–486. doi:10.1130/G23475A.1

    Article  Google Scholar 

  • Murray JW (1973) Deposition and ecology of living benthic foraminiferids. Russak and Co, Carne, pp 1–274

    Google Scholar 

  • Nederbragt A, Fiorentino A (1999) Stratigraphy and paleoceanography of the Cenomanian–Turonian boundary event in Oued Mellegue, northwestern Tunisia. Cretaceous Res 20:47–62

    Article  Google Scholar 

  • Nield EW, Tucker VCT (1985) Paleontology. An introduction. Pergamon Press, 178 p

  • Norris RD, Bice KL, Magno EA, Wilson PA (2002) Jiggling the tropical thermostat in the Cretaceous hothouse. Geology 30:299–302

    Article  Google Scholar 

  • Orabi HO (1992) Cenomanian–Turonian boundary in Whadi Watir, southeastern Sinai, Gulf of Aqaba, Egypt. J Afr Earth Sci 15:281–291

    Article  Google Scholar 

  • Pascal AF, Mathey BJ, Alzuma K, Lang L, Meister C (1993) Late Cenomanian–Early Turonian shelf ramp, Niger, west Africa. Simo AJ, Scott RW, Masse JP (eds) Cretaceous carbonate platforms. Am Assoc Pet Geol Bull Memoir 56:145–154

  • Paul CRC, Lamolda MA, Mitchell SF, Vaziri MR, Gorostidi A, Marshall JD (1999) The Cenomanian–Turonian boundary at Eastbourne (Sussex, UK): a proposed European reference section. Paleogeogr Paleoclimatol Paleoecol 150:83–121

    Article  Google Scholar 

  • Paul CRC, Mitchell SF, Marshall JD, Leary PN, Gale AS, Duane AM, Ditchfield PW (1994) Palaeoceanographic events in the middle Cenomanian of Northwest Europe. Cretaceous Res 15:707–738

    Article  Google Scholar 

  • Perty D, Lamolda M (1996) Benthonic foraminiferal mass extinction and survival assemblages from the Cenomanian–Turonian boundary event in the Menoyo section, northern Spain. Hart M (ed) Biotic recovery from mass extinction events. Geol Soc Special Publ 102:245–258

    Google Scholar 

  • Petters SW (1980) Foraminiferal paleoecology of Nigerian late Cretaceous epeiric seas. Ann Mus Hist Nat 6:82–133

    Google Scholar 

  • Philip J (2003) Peri-Tethyan neritic carbonate areas: distribution through time and driving factors. Paleogeogr Paleoclimatol Paleoecol 196:19–37

    Article  Google Scholar 

  • Philip JM, Airaud-Crumiere C (1991) The demise of the rudist-bearing carbonate platforms at the Cenomanian/Turonian boundary: a global control. Coral Reefs 10:115–125

    Article  Google Scholar 

  • Price GD, Hart MB (2002) Isotopic evidence for early to mid-Cretaceous ocean temperature variability. Mar Micropaleontol 46:45–58

    Article  Google Scholar 

  • Pufahl PK, James NP (2006) Monospecific Pliocene oyster buildups, Murray Basin, South Australia: brackish water end member of the reef spectrum. Paleogeogr Paleoclimatol Paleoecol 233:11–33

    Article  Google Scholar 

  • Robaszynski F, Gale AS (1993) The Cenomanian–Turonian boundary: a discussion held at the final session of the colloquium on the Cenomanian–Turonian events, Grenoble, 26th May 1991 (France). Cretaceous Res 14:607–611

    Article  Google Scholar 

  • Sageman BB, Meyers SR, Arthur MA (2006) Orbital time scale and new C-isotope record for Cenomanian–Turonian boundary stratotype. Geology 34(2):125–128

    Article  Google Scholar 

  • Schrag DP, DePaolo DJ, Richter FM (1995) Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate. Geochem Cosmochim Acta 59:2265–2278

    Article  Google Scholar 

  • Schulze F, Kuss J, Marzouk A (2005) Platform configuration, microfacies and cyclicities of the upper Albian to Turonian of west-central Jordan. Facies 50:505–527

    Article  Google Scholar 

  • Schulze F, Marzouk AM, Bassiouni MAA, Kuss J (2004) The late Albian–Turonian carbonate platform succession of west-central Jordan: stratigraphy and crisis. Cretaceous Res 25:709–737

    Article  Google Scholar 

  • Schulze F, Lewy Z, Kuss J, Gharaibeh A (2003) Cenomanian–Turonian carbonate platform deposits in west central Jordan. Int J Earth Sci (Geol Rundsch) 92:641–660

    Article  Google Scholar 

  • Tsikos H, Jenkyns HC, Walsworth-Bell B, Petrizzo MR, Forster A, Kolonic S, Erba E, Premoli Silva I, Baas M, Wagner T, Sinninghe Damste JS (2004) Carbon-isotope stratigraphy recorded by the Cenomanian–Turonian oceanic anoxic event: correlation and implications based on three key localities. J Geol Soc 161:711–719

    Article  Google Scholar 

Download references

Acknowledgments

We thank Haydon Mort for advise on phosphorus methods, comments and suggestions. We thank Thomas Steuber and one anonymous reviewer for their helpful comments. This material is based upon work supported by the National Science Foundation under Grant no. 0217921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gertsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gertsch, B., Keller, G., Adatte, T. et al. Cenomanian–Turonian transition in a shallow water sequence of the Sinai, Egypt. Int J Earth Sci (Geol Rundsch) 99, 165–182 (2010). https://doi.org/10.1007/s00531-008-0374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0374-4

Keywords

Navigation