Skip to main content
Log in

A Toarcian Ocean Anoxic Event record from an open-ocean setting in the eastern Tethys: Implications for global climatic change and regional environmental perturbation

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The Early Toarcian “Oceanic Anoxic Event” (T-OAE) is recorded by marked disruption to both the climate system and marine ecosystems. Here, we present intergraded high-resolution carbon-isotope data (δ13C), bulk geochemistry, mineral characterization from an open-ocean setting in the eastern Tethys. With these data, we (1) construct the high-resolution record of the T-OAE from an open-ocean setting in the eastern Tethys; (2) show that the T-OAE in the Sewa succession was marked by coarser-grained deposits associated with high-energy conditions within the otherwise low-energy claystone deposits that likely linked to a globally increased supply of clastic sediments into marginal and deeper marine basin; (3) propose that the low Corg:Ptotal ratios, in combination with bioturbated structure and depletion or slight enrichment in redox-sensitive trace elements of V, Mo, and U suggest a long-term oxygenation event throughout the T-OAE interval at the Sewa succession, and hence, anoxia may not play a fundamental role during the Toarcian negative CIE in this setting; (4) exhibit that a warming and more humid climate began at the start of the T-OAE, and many episodic changes in sediment provenance throughout the T-OAE interval occurred at this location; and (5) suggest that accumulation of organic-matter sediments during the T-OAE is generally controlled by global climatic changes, but a regional environmental perturbation also might influence the preservation of organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo T J, Ingall E. 2007. Sedimentary Corg:P ratios, paleocean ventilation, and Phanerozoic atmospheric pO2. Palaeogeogr Palaeoclimatol Palaeoecol, 256: 130–155

    Article  Google Scholar 

  • Algeo T J, Lyons T W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography, 21: PA1016

    Article  Google Scholar 

  • Algeo T J, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on Molybdenum-Uranium covariation. Chem Geol, 268: 211–225

    Article  Google Scholar 

  • Al-Suwaidi A H, Angelozzi G N, Baudin F, Damborenea S E, Hesselbo S P, Jenkyns H C, Manceñido M O, Riccardi A C. 2010. First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. J Geol Soc London, 167: 633–636

    Article  Google Scholar 

  • Al-Suwaidi A H, Hesselbo S P, Damborenea S E, Manceñido M O, Jenkyns H C, Riccardi A C, Angelozzi G N, Baudin F. 2016. The Toarcian Oceanic Anoxic Event (Early Jurassic) in the Neuquén Basin, Argentina: A reassessment of age and carbon isotope stratigraphy. J Geol, 124: 171–193

    Article  Google Scholar 

  • Bailey T R, Rosenthal Y, McArthur J M, van de Schootbrugge B, Thirlwall M F. 2003. Paleoceanographic changes of the Late Pliensbachian—early Toarcian interval: a possible link to the genesis of an Oceanic Anoxic Event. Earth Planet Sci Lett, 212: 307–320

    Article  Google Scholar 

  • Benitez-Nelson C R. 2000. The biogeochemical cycling of phosphorus in marine systems. Earth-Sci Rev, 51: 109–135

    Article  Google Scholar 

  • Cao Y, Song H Y, Algeo T J, Chu D L, Du Y, Tian L, Wang Y H, Tong J N. 2019. Intensified chemical weathering during the Permian-Triassic transition recorded in terrestrial and marine successions. Palaeogeogr Palaeoclimatol Palaeoecol, 519: 166–177

    Article  Google Scholar 

  • Caruthers A H, Gröcke D R, Smith P L. 2011. The significance of an Early Jurassic (Toarcian) carbon-isotope excursion in Haida Gwaii (Queen Charlotte Islands), British Columbia, Canada. Earth Planet Sci Lett, 307: 19–26

    Article  Google Scholar 

  • Chen L, Mattioli E, Da X J, Jenkyns H C, Zhu Z X, Xu G, Yi H S. 2018. Calcareous nannofossils from the Jurassic black shales in the Qiangtang Basin, Northern Tibet (China): New records of stratigraphic ages and palaeoceanography. Newsl Stratigr, 52: 55–72

    Article  Google Scholar 

  • Chen L, Yi H S, Hu R Z, Zhong H, Zou Y R. 2005. Organic geochemistry of the Early Jurassic oil shale from the Shuanghu area in northern Tibet and the Early Toarcian oceanic anoxic event. Acta Geol Sin-Engl, 79: 392–397

    Article  Google Scholar 

  • Cohen A S, Coe A L, Harding S M, Schwark L. 2004. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology, 32: 157–160

    Article  Google Scholar 

  • Cullers R L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos, 51: 181–203

    Article  Google Scholar 

  • Delaney M L. 1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Glob Biogeochem Cy, 12: 563–572

    Article  Google Scholar 

  • Derry L A, Kaufman A J, Jacobsen S B. 1992. Sedimentary cycling and environmental change in the late Proterozoic: Evidence from stable and radiogenic isotopes. Geochim Cosmochim Acta, 56: 1317–1329

    Article  Google Scholar 

  • Dinis P A, Garzanti E, Hahn A, Vermeesch P, Cabral-Pinto M. 2020. Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth-Sci Rev, 201: 103039

    Article  Google Scholar 

  • Exploration and Development Research Institute of Jianghan Petroleum Administration. 1996. Regional Petroleum Geological Report (1:10,000) for Tumen Coal Mine and Chaqu, Qiangtang Basin in Qinghai-Xizang area (in Chinese). Technical Report. Wuhan: Exploration and Development Research Institute of Jianghan Petroleum Administration

    Google Scholar 

  • Föllmi K B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci Rev, 40: 55–124

    Article  Google Scholar 

  • Fu X G, Wang J, Feng X L, Wang D, Chen W B, Song C Y, Zeng S Q. 2016a. Early Jurassic carbon-isotope excursion in the Qiangtang Basin (Tibet), the eastern Tethys: Implications for the Toarcian Oceanic anoxic event. Chem Geol, 442: 62–72

    Article  Google Scholar 

  • Fu X G, Wang J, Tan F W, Chen M, Li Z X, Zeng Y H, Feng X L. 2016b. New insights about petroleum geology and exploration of Qiangtang Basin, northern Tibet, China: A model for low-degree exploration. Mar Pet Geol, 77: 323–340

    Article  Google Scholar 

  • Fu X G, Wang J, Zeng S Q, Feng X L, Wang D, Song C Y. 2017. Continental weathering and palaeoclimatic changes through the onset of the Early Toarcian oceanic anoxic event in the Qiangtang Basin, eastern Tethys. Palaeogeogr Palaeoclimatol Palaeoecol, 487: 241–250

    Article  Google Scholar 

  • Fujisaki W, Sawaki Y, Yamamoto S, Sato T, Nishizawa M, Windley B F, Maruyama S. 2016. Tracking the redox history and nitrogen cycle in the pelagic Panthalassic deep ocean in the Middle Triassic to Early Jurassic: Insights from redox-sensitive elements and nitrogen isotopes. Palaeogeogr Palaeoclimatol Palaeoecol, 449: 397–420

    Article  Google Scholar 

  • Goryacheva A A, Zorina S O, Ruban D A, Eskin A A, Nikashin K I, Galiullin B M, Morozov V P, Mikhailenko A V, Nazarenko O V, Zayats P P. 2018. New palynological data for Toarcian (Lower Jurassic) deep-marine sandstones of the Western Caucasus, southwestern Russia. Geologos, 24: 127–136

    Article  Google Scholar 

  • Han Z, Hu X M, Kemp D B, Li J. 2018. Carbonate-platform response to the Toarcian Oceanic Anoxic Event in the southern hemisphere: Implications for climatic change and biotic platform demise. Earth Planet Sci Lett, 489: 59–71

    Article  Google Scholar 

  • Helby R, Morgan R, Partridge A D. 1987. A palynological zonation of the Australian Mesozoic. Memoir Assoc Austral Palaeontol, 4: 1–94

    Google Scholar 

  • Hermoso M, Le Callonnec L, Minoletti F, Renard M, Hesselbo S P. 2009. Expression of the Early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth Planet Sci Lett, 277: 194–203

    Article  Google Scholar 

  • Hermoso M, Pellenard P. 2014. Continental weathering and climatic changes inferred from clay mineralogy and paired carbon isotopes across the early to middle Toarcian in the Paris Basin. Palaeogeogr Palaeoclimatol Palaeoecol, 399: 385–393

    Article  Google Scholar 

  • Hesselbo S P, Jenkyns H C, Duarte L V, Oliveira L C V. 2007. Carbon-isotope record of the Early Jurassic (Toarcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet Sci Lett, 253: 455–470

    Article  Google Scholar 

  • Hesselbo S P, Pienkowski G. 2011. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin). Earth Planet Sci Lett, 301: 365–372

    Article  Google Scholar 

  • Howarth M K. 1992. The Ammonite family Hildoceratidae in the Lower Jurassic of Britain. Monogr Palaeontogr Soc Lond, 2: 107–200

    Article  Google Scholar 

  • Hu B, Zhang C X, Wu H B, Hao Q, Guo Z T. 2019. Clay mineralogy of an Eocene fluvial-lacustrine sequence in Xining Basin, Northwest China, and its paleoclimatic implications. Sci China Earth Sci, 62: 571–584

    Article  Google Scholar 

  • Ingall E, Kolowith L, Lyons T, Hurtgen M. 2005. Sediment carbon, nitrogen and phosphorus cycling in an anoxic fjord, Effingham Inlet, British Columbia. Am J Sci, 305: 240–258

    Article  Google Scholar 

  • Izumi K, Endo K, Kemp D B, Inui M. 2018. Oceanic redox conditions through the late Pliensbachian to early Toarcian on the northwestern Panthalassa margin: Insights from pyrite and geochemical data. Palaeogeogr Palaeoclimatol Palaeoecol, 493: 1–10

    Article  Google Scholar 

  • Izumi K, Miyaji T, Tanabe K. 2012. Early Toarcian (Early Jurassic) oceanic anoxic event recorded in the shelf deposits in the northwestern Panthalassa: Evidence from the Nishinakayama Formation in the Toyora area, west Japan. Palaeogeogr Palaeoclimatol Palaeoecol, 315–316: 100–108

    Article  Google Scholar 

  • Jenkyns H C. 1988. The early Toarcian (Jurassic) anoxic event; stratigraphic, sedimentary and geochemical evidence. Am J Sci, 288: 101–151

    Article  Google Scholar 

  • Jenkyns H C, Clayton C J. 1997. Lower Jurassic epicontinental carbonates and mudstones from England and Wales: Chemostratigraphic signals and the early Toarcian anoxic event. Sedimentology, 44: 687–706

    Article  Google Scholar 

  • Jenkyns H C, Jones C E, Gröcke D R, Hesselbo S P, Parkinson D N. 2002. Chemostratigraphy of the Jurassic System: Applications, limitations and implications for palaeoceanography. J Geol Soc London, 159: 351–378

    Article  Google Scholar 

  • Jin X, Shi Z Q, Baranyi V, Kemp D B, Han Z, Luo G M, Hu J F, He F, Chen L, Preto N. 2020. The Jenkyns Event (early Toarcian OAE) in the Ordos Basin, North China. Glob Planet Change, 193: 103273

    Article  Google Scholar 

  • John C M, Banerjee N R, Longstaffe F J, Sica C, Law K R, Zachos J C. 2012. Clay assemblage and oxygen isotopic constraints on the weathering response to the Paleocene-Eocene thermal maximum, east coast of North America. Geology, 40: 591–594

    Article  Google Scholar 

  • Kaufman A J, Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Res, 73: 27–49

    Article  Google Scholar 

  • Kemp D B, Coe A L, Cohen A S, Schwark L. 2005. Astronomical pacing of methane release in the Early Jurassic period. Nature, 437: 396–399

    Article  Google Scholar 

  • Kemp D B, Izumi K. 2014. Multiproxy geochemical analysis of a Panthalassic margin record of the early Toarcian oceanic anoxic event (Toyora area, Japan). Palaeogeogr Palaeoclimatol Palaeoecol, 414: 332–341

    Article  Google Scholar 

  • Kimura T. 1998. Relationships between inorganic elements and minerals in coals from the Ashibetsu district, Ishikari coal field, Japan. Fuel Process Technol, 56: 1–19

    Article  Google Scholar 

  • Mantovani M, Escudero A, Becerro A I. 2010. Effect of pressure on kaolinite illitization. Appl Clay Sci, 50: 342–347

    Article  Google Scholar 

  • McLennan S M, Hemming S, McDaniel D K, Hanson G N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson M J, Basu A, eds. Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper, 284. 284: 21–40

    Chapter  Google Scholar 

  • McLennan S M, Taylor S R. 1991. Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. J Geol, 99: 1–21

    Article  Google Scholar 

  • Meng Q T, Liu Z J, Bruch A A, Liu R, Hu F. 2012. Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun basin, China. J Asian Earth Sci, 45: 95–105

    Article  Google Scholar 

  • Montero-Serrano J C, Föllmi K B, Adatte T, Spangenberg J E, Tribovillard N, Fantasia A, Suan G. 2015. Continental weathering and redox conditions during the early Toarcian Oceanic Anoxic Event in the northwestern Tethys: Insight from the Posidonia Shale section in the Swiss Jura Mountains. Palaeogeogr Palaeoclimatol Palaeoecol, 429: 83–99

    Article  Google Scholar 

  • Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299: 715–717

    Article  Google Scholar 

  • Nikitenko B L, Devyatov V P, Lebedeva N K, Basov V A, Fursenko E A, Goryacheva A A, Peshchevitskaya E B, Glinskikh L A, Khafaeva S N. 2018. Jurassic and Cretaceous biostratigraphy and organic matter geochemistry of the New Siberian Islands (Russian Arctic). Rus Geol Geophys, 59: 168–185

    Article  Google Scholar 

  • Pálfy J, Smith P L. 2000. Synchrony between Early Jurassic extinction, oceanic anoxic event, and the Karoo-Ferrar flood basalt volcanism. Geology, 28: 747

    Article  Google Scholar 

  • Palliani R B. 1997. Toarcian sporomorph assemblages from the Umbria-Marche Basin, central Italy. Palynology, 21: 105–121

    Article  Google Scholar 

  • Redfield A C. 1958. The biological control of chemical factors in the environment. Am Sci, 46: 205–222

    Google Scholar 

  • Remírez M N, Algeo T J. 2020. Carbon-cycle changes during the Toarcian (Early Jurassic) and implications for regional versus global drivers of the Toarcian oceanic anoxic event. Earth-Sci Rev, 209: 103283

    Article  Google Scholar 

  • Reolid M, Emanuela M, Nieto L M, Rodríguez-Tovar F J. 2014. The Early Toarcian Oceanic Anoxic Event in the external subbetic (Southiberian Palaeomargin, Westernmost Tethys): Geochemistry, nannofossils and ichnology. Palaeogeogr Palaeoclimatol Palaeoecol, 411: 79–94

    Article  Google Scholar 

  • Rietveld H M. 1969. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr, 2: 65–71

    Article  Google Scholar 

  • Ruebsam W, Münzberger P, Schwark L. 2014. Chronology of the Early Toarcian environmental crisis in the Lorraine Sub-Basin (NE Paris Basin). Earth Planet Sci Lett, 404: 273–282

    Article  Google Scholar 

  • Singer A. 1980. The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Sci Rev, 15: 303–326

    Article  Google Scholar 

  • Suan G, Nikitenko B L, Rogov M A, Baudin F, Spangenberg J E, Knyazev V G, Glinskikh L A, Goryacheva A A, Adatte T, Riding J B, Föllmi K B, Pittet B, Mattioli E, Lécuyer C. 2011. Polar record of Early Jurassic massive carbon injection. Earth Planet Sci Lett, 312: 102–113

    Article  Google Scholar 

  • China National Petroleum Corporation. 1996. SY/T 6210-1996. X-ray diffraction quantitative analysis methods of the clay minerals and common non-clay minerals in sedimentary rocks (in Chinese). Beijing: China National Petroleum Corporation. 1–28

    Google Scholar 

  • Wang J, Tan F W, Li Y L, Li Y T, Chen M, Wang C S, Guo Z J, Wang X L, Du B W, Zhu Z F. 2004. The potential of the oil and gas resources in major sedimentary basins on the Qinghai-Xizang Plateau (in Chinese with English abstract). Beijing: China Geological Publishing House. 167–168

    Google Scholar 

  • Wang X Y, Teng Y H, Mei M X, Zhang K Z, Wang Y X, Li Y P, Shan G H, Li P Z. 1998. Regional Petroleum Geological Report (1:10,000) for Xiya, Eyacuo, and Mugou Riwang, Qiangtang Basin in Qinghai-Xizang area (in Chinese). Technical Report. Daqing: Daqing Petroleum Institute. 20–25

    Google Scholar 

  • Wang Y S, Zhang S Q, Xie Y H, Li C Z, Yu X W, Zhen C Z, Feng D C, Wang Z H, Duan J X, Sun Z G, Li Q W, Lu Z L, Jiang X F, Lu P, Li X B, Liu G Z, Wang H S. 2012. Regional Geological Report (1:250,000) for Angdar Co, China(in Chinese). Beijing: China University of Geosciences Press. 25–31

    Google Scholar 

  • Wedepohl K H. 1991. The composition of the upper Earth’s crust and the natural cycles of selected metals. In: Merian E, ed. Metals and their Compounds in the Environment. Weinheim: VCH-Verlagsgesellschaft. 3–17

    Google Scholar 

  • Wignall P B, Bond D P G, Kuwahara K, Kakuwa Y, Newton R J, Poulton S W. 2010. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob Planet Change, 71: 109–123

    Article  Google Scholar 

  • Xu W M, Ruhl M, Jenkyns H C, Leng M J, Huggett J M, Minisini D, Ullmann C V, Riding J B, Weijers J W H, Storm M S, Percival L M E, Tosca N J, Idiz E F, Tegelaar E W, Hesselbo S P. 2018. Evolution of the Toarcian (Early Jurassic) carbon-cycle and global climatic controls on local sedimentary processes (Cardigan Bay Basin, UK). Earth Planet Sci Lett, 484: 396–411

    Article  Google Scholar 

  • Yang J H, Jiang S Y, Ling H F, Feng H Z, Chen Y Q, Chen J H. 2004. Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, South China. Prog Nat Sci, 14: 152–157

    Article  Google Scholar 

  • Yi H S, Lin J H, Zhao B, Li Y, Shi H, Zhu L D. 2003. New biostratigraphic data of the Qiangtang area in the northern Tibetan Plateau (in Chinese with English abstract). Geol Rev, 49: 59–65

    Google Scholar 

  • Yin J R, Gao J H, Wang Y S, Zhang S Q, Zheng C Z, Xu D B, Bai Z D, Sun L X, Su X. 2006. Jurassic ammonites in anoxic black shales from Sewa and Ando, northern Tibet (in Chinese with English abstract). Acta Palaeontol Sin, 45: 311–331

    Google Scholar 

  • Zhao Z Z, Li Y T, Ye H F, Zhang Y W. 2001. Stratum in the Qianhai-Xizang Plateau (in Chinese with English abstract). Beijing: Science Press. 234–235

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 91955204) and the Second Tibetan Plateau Scientific Expedition and Research Program (STEP) (Grant No. 2019QZKK080301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiugen Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Wang, J., Wen, H. et al. A Toarcian Ocean Anoxic Event record from an open-ocean setting in the eastern Tethys: Implications for global climatic change and regional environmental perturbation. Sci. China Earth Sci. 64, 1860–1872 (2021). https://doi.org/10.1007/s11430-020-9753-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9753-1

Keywords

Navigation