Skip to main content
Log in

Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Based on facies analysis of more than 5,500 m cores of 45 deep wells, three large sub-provinces have been defined for the Lower Rotliegend volcanic rocks in the central Southern Permian Basin (SPB) in northeastern Germany and western Poland. Additional data came from unpublished descriptions of more than 200 wells. The three sub-provinces are: (a) the Mecklenburg–Vorpommern Sub-Province (MVSP) dominated by silica-rich lava domes and subvolcanic intrusions, (b) the Eastern Brandenburg Sub-Province (EBSP) dominated by a Mg-andesite shield volcano complex, which extends into western Poland, and (c) the Flechtingen–Altmark Sub-Province (FASP) with prominent ignimbrite sheets punctuated by lava domes and flows. Whereas in NE Germany thickness of up to 2,300 m have been found in places, in western Poland ignimbrites and other pyroclastic deposits as well as andesitic and silica-rich lava complexes accumulated successions of a few hundreds of meters. A hiatus of up to 30 Ma occurs between the Lower Rotliegend volcanic and sedimentary rocks (Asselian–Sakmarian), and Upper Rotliegend II sediments (Upper Wordian–Capitanian). Upper Rotliegend I deposits are known from a few wells and outcrops, only. Previous studies postulated solely intrabasinal tectonics to account for this major unconformity. However, under semiarid to arid conditions as assumed for the Rotliegend of the SPB both SiO2-rich lava complexes and silica-poor shield volcanoes can be expected as being extremely resistant to weathering and erosion. Most probably these bodies “drowned” in a regolith formed by physical weathering, rarely removed by torrential rain. Thus, the silica-rich lava complexes and the shield volcanoes in the Central European Basin System (CEBS) can be viewed as long-living morphological highs, with intervolcanic depressions in between. In these intervolcanic depressions, syn- to postvolcanic successions of conglomeratic to sandy alluvial fan sediments and lake to mud flat deposits accumulated during the Upper Rotliegend I. They show numerous pedogenic horizons representing times of non-deposition. During the Upper Rotliegend II, the remaining volcano-topography was filled up with alluvial, eolian and playa deposits. In some places in western Poland, covering was not complete until the Zechstein (Latest Permian). At the same time, soil formation and/or erosion in the upper part of SiO2-rich complexes and shield volcanoes remained subordinate. Consequently, the volcano-topographic hiatus on top of the volcanic complexes comprises the maximum period of time, whereas in the intervolcanic depressions this time splits into periods of deposition and numerous minor intraformational hiati. Intrabasinal tectonic activity cannot be ruled out as one major control of the Rotliegend depositional evolution in the subsiding SPB. However, the presence of weathering-resistant volcanic edifices led to the formation of long-lasting depositional gaps in many regions of the central SPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Autorenkollektiv (1986) Dokumentationsband: Kurzprofile Autunvulkanite (N – DDR). Unveröff. Bericht GFE Freiberg

  • Awdankiewicz M, Breitkreuz C, Ehling B-C (2004) Emplacement textures in Late Palaeozoic andesite sills of the Flechtingen–Roßlau Block, north of Magdeburg (Germany). In: Breitkreuz C, Petford N (eds) Physical geology of high-level magmatic systems. Geol Soc Spec Publ 234:5–12

  • Baltrusch S, Klarner S (1993) Rotliegend–Gräben in NE-Brandenburg. Z Dtsch Geol Ges 144:173–186

    Google Scholar 

  • Bauer M, Schust F, Stedingk K, Matheis G (1995) The hidden granites of Flechtingen and Roxförde, North German Basin. Zentralbl Geol Paläont Teil I 5/6:553–560

    Google Scholar 

  • Benek R (1995) Late Variscan calderas/volcanotectonic depressions in eastern Germany. Terr Nostra 7/95:16–19

    Google Scholar 

  • Benek R, Paech HJ, Schirmer B (1973) Zur Gliederung der permosilesischen Vulkanite der Flechtinger Scholle. Z Geol Wiss 1:867–878

    Google Scholar 

  • Benek R, Kramer W, McCann T, Scheck M, Negendank J, Korich D, Huebscher H-D, Bayer U (1996) Permo-Carboniferous magmatism of the Northeast German Basin. Tectonophys 266:379–404

    Article  Google Scholar 

  • Bierman PR, Caffee M (2001) Slow rates of rock surface erosion and sediment production across the Namib Desert and Escarpment, Southern Africa. Am J Sci 301:326–358

    Article  Google Scholar 

  • Boche M (1999) Vulkanofazielle und granulometrische Untersuchungen an den oberkarbonischen Ignimbriten der Flechtinger Scholle. Unpubl Diploma Thesis, Univ and GeoForschungsZentrum in Potsdam, p 108

  • Börmann C, Gast R, Görisch F (2006) Structural and sedimentological analysis of an early Late Rotliegendes graben based on 3D seismic and well log data, German North Sea, Germany. Petrol Geosci 12:1–10

    Google Scholar 

  • Bogaard PJF, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, central Germany. J Petrol 44:569–602

    Article  Google Scholar 

  • Breitkreuz C, Kennedy A (1999) Magmatic flare-up at the Carboniferous/Permian boundary in the NE German basin revealed by SHRIMP zircon ages. Tectonophys 302:307–326

    Article  Google Scholar 

  • Breitkreuz C, Karnkowski P, Muszynski A, Panczyk M, Protas A (2000) The Wolsztyn Ridge in western Poland during the Early Permian: paleogeography, volcanic activity and coarse-grained sedimentation at an intra-basinal high. GGW/PTG meeting, Slubice, Exkurs. F. u. Veröfftl GGW 209:58–60

  • Breitkreuz C, Ehle H, Franz G, Reimer W, Schreiter F (2004) Quantitative geometric analysis of phonolitic mesa flows in the Neogene Meidob Volcanic Field (NW Sudan) based on ASTER satellite images. 32 Int Geol Congr, Firence, Abstract volume

  • Breitkreuz C, Kennedy A, Geißler M, Ehling B-C, Kopp J, Muszynski A, Protas A, Stouge S (2007) Far Eastern Avalonia: its chronostratigraphic structure revealed by SHRIMP zircon ages from Upper Carboniferous to Lower Permian volcanic rocks (drill cores from Germany, Poland and Denmark). Geol Soc Am Spec Pap 423:173–190

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Allen & Unwin, London, p 527

    Google Scholar 

  • Cole JW, Milner DM, Spinks KD (2005) Calderas and caldera structures: a review. Earth Sci Rev 69:1–26

    Article  Google Scholar 

  • Corry CE (1988) Laccoliths; mechanics of emplacement and growth. Geol Soc Am Spec Pap 220:1–110

    Google Scholar 

  • Dadlez R, Narkiewicz M, Stephenson RA, Visser MT, van Wees JD (1995) Tectonic evolution of the Mid-Polish trough: modelling implications and significance for central European geology. Tectonophys 252:179–196

    Article  Google Scholar 

  • Davidson J, de Silva SL (2000) Composite volcanoes. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 663–682

    Google Scholar 

  • De Goër A, Boivin P, Camus G, Gourgaud A, Kieffer G, Merggoil J, Vincent PM (1991) Volcanology of the Chaîne des Puys. Parc Naturel Regional des Volcans d’Auvergne, Imprimerie Moderne, Aurillac, p 127

  • De Silva SL, Self S, Francis PW, Drake RE, Ramirez C (1994) Effusive silicic volcanism in the Central Andes: the Chao dacite and other young lavas of the Altiplano–Puna volcanic complex. J Geophys Res 99(B9):17805–17825

    Article  Google Scholar 

  • Deutsche Stratigraphische Kommission (ed) (2002) Stratigraphische Tabelle von Deutschland 2002. 1. Aufl., E. Stein, Potsdam

  • Dohrenwend JC, Wells SG, Turrin BD (1986) Degradation of quaternary cinder cones in the Cima volcanic field, Mojave Desert, California. Geol Soc Am Bull 97:421–427

    Article  Google Scholar 

  • Dohrenwend JC, Abrahams AD, Turrin BD (1987) Drainage development on basaltic lava flows, Cima volcanic field, southeast California, and Luna Crater field, south-central Nevada. Geol Soc Am Bull 99:405–413

    Article  Google Scholar 

  • Egenhoff SO, Breitkreuz C (2001) Fazielle Entwicklung und stratigraphische Revision oberkarbonischer Sedimente im Flechtinger Höhenzug (nördlich Magdeburg). Sediment 2001, Jena, Schriftr DGG, Heft 13, p 33

  • Ekren EB, McIntyre DH, Bennet EH (1984) High-temperature, large-volume, lavalike ash-flow tuffs without calderas in southwestern Idaho. USGS Prof Pap 1272:76

    Google Scholar 

  • Enos P (1991) Sedimentary parameters for computer modeling. In: Franseen EK, Watney WL, Kendall CGStC, Ross W (eds) Sedimentary modeling: computer simulations and methods for improved parameter definition. Bull Kans Geol Surv 233:63–99

  • Francis EH (1983) Magma and sediment II: problems of interpreting palaevolcanics buried in the stratigraphic column. J Geol Soc Lond 140:165–183

    Article  Google Scholar 

  • Franke D, Hoffmann N, Lindert W (1995) The Variscan deformation front in east Germany. Part 1. Geological and geophysical constraints. Z Angew Geol 41:83–91

    Google Scholar 

  • Franz G, Breitkreuz C, Coyle DA, El Hur B, Heinrich W, Paulick H, Pudlo D, Smith R, Steiner G (1997) The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan). J Afr Earth Sci 25:263–291

    Article  Google Scholar 

  • Gabriel W (1990) Der permokarbone Vulkanismus der Altmark. Unpubl PhD Thesis, Martin-Luther Univ, Halle, p 191

  • Gaitzsch B (1995) Extramontane Senken im variscischen Finalstadium in Norddeutschland—Lithofaziesmuster, Tektonik und Beckenentwicklung. Unpubl PhD Thesis, Techn Univ Bergakademie Freiberg, p 101

  • Gaitzsch B, Ellenberg J, Lützner H, Benek R (1995) Flechtinger Scholle. In: Plein E (ed) Stratigraphie von Deutschland I—Norddeutsches Rotliegendbecken, Rotliegend-Monographie Teil II. Couri Forsch Senckenb 183:84–96

  • Gast R (1988) Rifting im Rotliegenden Nierdersachsens. Geowiss 4:115–122

    Google Scholar 

  • Gast R, Gundlach T (2006) Permian strike-slip and extensional tectonics in Lower Saxony, Germany. Z Dtsch Ges Geowiss 157:41–56

    Article  Google Scholar 

  • Gebhardt U, Schneider J, Hoffmann N (1991) Modelle zur Stratigraphie und Beckenentwicklung im Rotliegenden der Norddeutschen Senke. Geol Jb A 127:405–427

    Google Scholar 

  • Geißler M, Obst K, Breitkreuz C (2006) Magmatic textures and contacts of Permo-Carboniferous volcanic and subvolcanic rocks from the deep wells Mirow 1/74 and Parchim 1/68 and its implications on the initial evolution of the North German Basin. Vis Geosci 11:81–82

    Google Scholar 

  • Gibbs MT, McAllister P, Kutzbach JE, Ziegler AM, Behling PJ, Rowley DB (2002) Simulations of Permian climate and comparisons with climate-sensitive sediments. J Geol 110:33–55

    Article  Google Scholar 

  • Harangi S, Downes H, Kósa L, Szabó Cs, Thirlwall MF, Mason PRD, Mattey D (2001) Almandine garnet in calc-alkaline volcanic rocks of the northern Pannonian Basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843

    Article  Google Scholar 

  • Harry DL, Leeman WP (1995) Partial melting of melt metasomatized subcontinental mantle and the magma source potential of the lower lithosphere. J Geophys Res 100:10255–10269

    Article  Google Scholar 

  • Heeremans M, Faleide JI, Larsen BT (2004) Late Carboniferous–Permian of NW Europe: an introduction to a new regional map. In: Wilson, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geol Soc Spec Publ 223:75–88

  • Hoffmann N (1990) Zur paläodynamischen Entwicklung des Präzechsteins in der Nordostdeutschen Senke. In: Eiserbeck W, Franke D, Harff J, Hoffmann N, Hoth K, Müller EP, Springer J (eds) Geologie und Kohlenwasserstoff-Erkundung im Präzechstein der DDR—Nordostdeutsche Senke. Nds Akad Geowiss Veröfftl 4:5–18

  • Hoffmann N, Kamps H-J, Schneider J (1989) Neuerkenntnisse zur Biostratigraphie und Paläodynamik des Perms in der Nordostdeutschen Senke—ein Diskussionsbeitrag. Z Angew Geol 35:198–207

    Google Scholar 

  • Hoffmann N, Pokorski J, Lindert W, Bachmann GH (1997) Rotliegend stratigraphy, palaeogeography and facies in the eastern part of the Central European Basin. Prac Państwow Inst Geol, Warsaw, CL VII, Part 2:75–86

    Google Scholar 

  • Hoth P (1997) Fazies und Diagenese von Präperm-Sedimenten der Geotraverse Harz–Rügen. Schriftr Gesellsch Geol Wiss 4:139

    Google Scholar 

  • Hoth K, Huebscher H-D, Korich D, Gabriel W, Enderlein F (1993a) Die Lithostratigraphie der permokarbonischen Effusiva im Zentralabschnitt der Mitteleuropäischen Senke—Der permokarbone Vulkanismus im Zentralabschnitt der Mitteleuropäischen Senke. Geol Jb A 131:179–196

    Google Scholar 

  • Hoth K, Huebscher H-D, Korich D, Enderlein F, Gabriel W (1993b) Methodik zur Rekonstruktion der Paläomorphologie tiefbegrabener Effusiva in der Mitteleuropäischen Senke. Z Geol Wiss 21:291–297

    Google Scholar 

  • Hoth K, Rusbült J, Zagora K, Beer H, Hartmann O (1993c) Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke—Dokumentation für den Zeitabschnitt 1962–1990. Schriftenr f Geowiss 2:1–145

    Google Scholar 

  • Huebscher HD (1989) Petrologie der andesitischen subsequenten variszischen Vulkanite im Ostbrandenburger Vulkanitkomplex und deren epigenetische Umwandlungen. Unpubl PhD Thesis, Ernst Moritz Arndt Univ Greifswald, p 143

  • Jackowicz E (1983) Petrografia skał wulkanicznych czerwonego spągowca. W: Profile głębokich otworów wiertniczych Instytutu Geologicznego, Ośno IG 2., z. 57, str. 60–76, Warszawa

  • Jackowicz E (1994) Persmkie skaly wulkaniczne pólnocnej czesci monokliny przedsudeckiej. Pr Pánstw Inst Geol 145:1–47

    Google Scholar 

  • Johnson RW (ed) (1989) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press, Cambridge, p 408

    Google Scholar 

  • Katzung G (1995) Prä-Zechstein in Zentral- und Ostbrandenburg. Berl Geowiss Abh A 168:5–21

    Google Scholar 

  • Katzung G, Obst K (2004) Perm, Rotliegendes. In: Katzung G (ed) Geologie von Mecklenburg–Vorpommern. E Schweizerbart, Stuttgart, pp 98–132

    Google Scholar 

  • Kiersnowski H (1997) Depositional development of the Polish Upper Rotliegend Basin and evolution of its sediment source areas. Geol Q 41:433–456

    Google Scholar 

  • Kiersnowski H, Buniak A (2006) Evolution of the Rotliegend Basin of northwestern Poland. Geol Q 50:119–138

    Google Scholar 

  • Kleditzsch O (2004) Modalbestand, Materialherkunft und geotektonische Position der Sandsteine des tieferen Oberrotliegend II (Mittel-/Oberperm) der Altmark und angrenzender Gebiete Nordostdeutschlands—Tektonik, Klima oder beides? Z Geol Wiss 32:353–385

    Google Scholar 

  • Kober F, Ivy-Ochs S, Schlunegger F, Baur H, Kubik PW, Wieler R (2007) Denudation rates and a topography-driven rainfall threshold in northern Chile: multiple cosmogenic nuclide data and sediment yield budgets. Geomorphology 83:97–120

    Article  Google Scholar 

  • Korich D (1992) Zur Vulkanologie und Korrelation der permosilesischen Vulkanite im Darß-Uckermark-Eruptivkomplex/Nordostdeutschland. Z Geol Wiss 20:467–473

    Google Scholar 

  • Korich D, Kramer W (1994) Permosilesische Magmatite im Untergrund von Rügen und der östlich angrenzenden Ostsee. Z Geol Wiss 22:249–256

    Google Scholar 

  • Krawczyk CM, Stiller M, DEKORP-Basin Research Group (1999) Reflection seismic constraints on Palaeozoic crustal structures and Moho beneath the NE German Basin. Tectonophys 314:241–254

    Article  Google Scholar 

  • Legler B, Gebhardt U, Schneider JW (2005) Late Permian non-marine–marine transitional profiles in the central Southern Permian Basin, northern Germany. Int J Earth Sci 94:851–862

    Article  Google Scholar 

  • Lorenz V, Haneke J (2004) Relationship between diatremes, dykes, sills, laccoliths, intrusive–extrusive domes, lava flows, and tephra deposits with unconsolidated water-saturated sediments in the Late Variscan intermontane Saar–Nahe basin, SW Germany. Geol Soc Lond Spec Publ 234:75–124

    Google Scholar 

  • Love DW, Connell SD (2005) Late Neogene drainage development on the southeastern Colorado Plateau, New Mexico. New Mexico Mus Nat Hist Sci Bull 28:151–169

    Google Scholar 

  • Maliszewska A, Kiersnowski H, Jackowicz E (2003) Lower Rotliegend volcaniclastic rocks at Wielkopolska (Western Poland). Pr Państw Inst Geol 179:1–59

    Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552

    Article  Google Scholar 

  • Marx J (1995) Permokarbonischer Vulkanismus in Niedersachsen. Zentralbl Geol Paläont Teil I 1993(9/10):1429–1442

    Google Scholar 

  • Marx J, Huebscher H-D, Hoth K, Korich D, Kramer W (1995) Vulkanostratigraphie und Geochemie der Eruptivkomplexe. Stratigraphie von Deutschland I—Norddeutsches Rotliegendbecken. Cour Forsch Senckenb 183:54–83

    Google Scholar 

  • Menning M (1995) A numerical time scale for the Permian and Triassic periods: an integrative time analysis. In: Scholle PA, Peryt TM, Ulmer-Scholle D (eds) The Permian of Northern Pangea 1: paleogeography, paleoclimates, stratigraphy. Springer, Berlin, pp 77–97

    Google Scholar 

  • Menning M, Katzung G, Lützner H (1988) Magnetostratigraphic investigations in the Rotliegendes (300–252 Ma) of Central Europe. Z Geol Wiss 16:1045–1063

    Google Scholar 

  • Mills HH (1976) Estimated erosion rates on Mount Ranier, Washington. Geology 4:401–406

    Article  Google Scholar 

  • Németh K, Martin U (1999) Late Miocene paleo-geomorphology of the Bakony–Balaton Highland Volcanic Field (Hungary) using physical volcanology data. Z Geomorph N F 43:417–438

    Google Scholar 

  • Németh K, White JDL (2003) Geochemical evolution, vent structures, and erosion history of small-volume volcanoes in the Miocene intracontinental Waipiata Volcanic Field, New Zealand. GeoLines 15:98–101

    Google Scholar 

  • Neumann E-R, Wilson M, Heeremans M, Spencer EA, Obst K, Timmerman MJ, Kirstein L (2004) Carboniferous–Permian rifting and magmatism in southern Scandinavia, the North Sea and northern Germany: a review. Geol Soc Lond Spec Publ 223:11–40

    Article  Google Scholar 

  • Neunzert GH, Gaupp R, Littke R (1996) Absenkungs- und Temperaturgeschichte paläozoischer und mesozoischer Formationen im Nordwestdeutschen Becken. Z Dtsch Geol Ges 147:183–208

    Google Scholar 

  • Paech H-J, Eisenächer L, Burchardt I (1973) Neue Ergebnisse zur Geologie der Süplinger Schichten (Flechtinger Scholle). Z Geol Wiss 1:831–847

    Google Scholar 

  • Paulick H, Breitkreuz C (2005) The Late Paleozoic felsic lava-dominated large igneous province in North East Germany: volcanic facies analysis based on drill cores. Int J Earth Sci 94:834–850

    Article  Google Scholar 

  • Pik R, Blard P, Vigier N, Lave J, Ayalew D, Yirgu G (2005) Preservation and erosion of a Cenozoic volcanic plateau assessed by cosmogenic nuclids. Constraints for the morpho-tectonic evolution of the Afar Margin. AGU, Fall Meeting 2005, Abstract #U32A-01

  • Pokorski J (1988) Mapy paleotektoniczne czerwonego spagowca w Polsce. Kwart Geol 32:15–32

    Google Scholar 

  • Reiners PW, Ehlers TA, Mitchell SG, Montgomery DR (2003) Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 426:645–647

    Article  Google Scholar 

  • Rieke H, McCann T, Krawczyk CM, Negendank JFW (2003) Evaluation of controlling factors on facies distribution and evolution in an arid continental environment: an example from the Rotliegend of the NE German Basin. Geol Soc Lond Spec Publ 208:71–94

    Google Scholar 

  • Roscher M, Schneider J (2006) Permo-Carboniferous climate: early Pennsylvanian to Late Permian climate development of central Europe in a regional and global context. Geol Soc Lond Spec Publ 265:95–136

    Google Scholar 

  • Ruxton BP, McDougall I (1967) Denudation rates in northeast Papua from potassium–argon dating of lavas. Am J Sci 265:545–561

    Article  Google Scholar 

  • Schott B, Schmeling H (1998) Delamination and detachment of a lithospheric root. Tectonophys 296:225–247

    Article  Google Scholar 

  • Stedingk K, Hess JC, Bauer M (1997) Zur regionalen Position, Ausbildung und Altersstellung des Granits von Flechtingen. Z Geol Wiss 25:317–329

    Google Scholar 

  • Stollhofen H (1998) Facies architecture variations and seismogenic structures in the Carboniferous–Permian Saar–Nahe Basin (SW Germany): evidence for extension-related transfer fault activity. Sed Geol 119:47–83

    Article  Google Scholar 

  • Thouret J-C (1999) Volcanic geomorphology—an overview. Earth Sci Rev 47:95–131

    Article  Google Scholar 

  • Van der Wateren FM, Dunai TJ (2001) Late Neogene passive margin denudation history—cosmogenic isotope measurements from the central Namib Desert. Glob Planet Change 30:271–307

    Article  Google Scholar 

  • Van Wees J-D, Stephenson RA, Ziegler PA, Bayer U, McCann T, Dadlez R, Gaupp R, Narkiewicz M, Bitzer F, Scheck M (2000) On the origin of the Southern Permian Basin, Central Europe. Mar Petrol Geol 17:43–59

    Article  Google Scholar 

  • Walker GPL (1984) Topographic evolution of eastern Iceland. Jökull 32:13–20

    Google Scholar 

  • Wegner H-U (1972) Grobklastische Sedimente des Unterperms in Nordostmecklenburg. Unpubl PhD thesis, Ernst Moritz Arndt Univ Greifswald, p 224

  • Wood CA (1980) Morphometric analysis of cinder cone degradation. J Volc Geoth Res 8:137–160

    Article  Google Scholar 

  • Ziegler P (1990) Geological atlas of western and central Europe, 2nd edn. Shell Int Petrol Mij dist Geol Soc Publ House, Bath, pp 1–239

    Google Scholar 

Download references

Acknowledgments

Funding for this study came from the German Research Foundation (DFG grant Br 997/21-1,2) in the framework of the Priority Program 1135 (Dynamics of sedimentary systems under varying stress regimes: examples of the Central European Basin). Access to cores and sampling permission was kindly provided by the State Geological Surveys of Mecklenburg–Vorpommern, Sachsen–Anhalt and Brandenburg, and by the Polish Geological Institute and Geonafta. Erdgas Erdöl GmbH Berlin is acknowledged for providing well data. Norbert Hoffmann is thanked for facilitating access to files of the Federal Institute for Geosciences and Natural Resources (BGR) in Berlin-Spandau and for helpful discussions. Stimulating discussion also came from Karsten Obst. Harald Stollhofen and Stephan Königer are thanked for providing careful reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Breitkreuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geißler, M., Breitkreuz, C. & Kiersnowski, H. Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland): facies distribution and volcano-topographic hiati. Int J Earth Sci (Geol Rundsch) 97, 973–989 (2008). https://doi.org/10.1007/s00531-007-0288-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0288-6

Keywords

Navigation