Skip to main content
Log in

High radiogenic heat production in the Kerala Khondalite Block, Southern Granulite Province, India

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

In situ radioelemental (K, U and Th) analysis and heat production estimates have been made at 59 sites in the Kerala Khondalite Block (KKB) of the Southern Granulite Province (SGP) of India. Together with the in situ analyses on granulites and gneisses previously reported from 28 sites, and heat production estimated from the published geochemical analyses on granites and syenites of the KKB, the new data set allows good characterization of heat production for the major granulite facies rocks and granitoids of the KKB. Garnet biotite gneisses are characterized by high levels of Th and U, with mean values of 60 and 3 ppm, respectively. Khondalites, leptynites and charnockites have slightly lower levels of Th (23, 20 and 22 ppm, respectively) and U (2.9, 2.4 and 0.9 ppm, respectively). The mean K, U, Th abundances for the granites, leucogranites and granitic gneisses ranges from 3.9 to 4.3%, 2.6 to 4.3 ppm, 22 to 50 ppm respectively, and for the syenites 4.8%, 2 ppm and 5.7 ppm. Mean radiogenic heat production values for garnet–biotite gneiss, khondalite, leptynite and charnockite are 5.5, 2.7, 2.4 and 2.2 μW m−3, respectively. For the granites, leucogranites, granitic gneisses and syenites it is 2.6, 3.4, 4.6 and 1.4 μW m−3, respectively. Heat production of granulite facies rocks, which are the most abundant rocks in KKB, correlate well with Th, but less with U, suggesting that variation is caused by Th and U bearing accessory minerals such as monazite and zircon. The high heat production of the KKB granulites are in contrast to the low heat production of the Late Archaean granulites of the Northern Block (NB) of the SGP which are highly depleted in radioelements and also the granulites of Madurai Block (MB) that have higher radioelemental abundances than in the granulites of the NB. The high heat production of the KKB granulites could be due to the nature of protoliths and/or metasomatism associated with Neoproteroic- to- Pan African alkaline magmatic activity represented by alkali granite and syenite–carbonatite emplacements and emplacement of pegmatites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ashwal LD, Morgan P, Kelley SA, Percival JA (1987) Heat production in an Archaean crustal profile and implications for heat flow and mobilization of heat producing elements. Earth Plan Sci Lett 85:439–450

    Article  Google Scholar 

  • Bartlett JM, Harris NBW, Hawkesworth CJ, Santosh M (1995) New isotope constraints on the crustal evolution of south India and Pan-African granulite metamorphism. Mem Geol Soc India 34:391–397

    Google Scholar 

  • Bea F, Montero P (1999) Behaviour of accessory phases and redistribution of of Zr, REE, Y, Th and U during metamorphism and partial melting of metapelites of Ivrea-Verbano, Northwest Italy. Geochim Cosmochim Acta 63:1133–1153

    Article  Google Scholar 

  • Bingen B, Demaiffe D, Hertogen J (1996) Redistribution of rare earth elements, thorium and uranium over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite and monazite in orthogneisses from southwestern Norway. Geochim Cosmochim Acta 60:1341–1354

    Article  Google Scholar 

  • Birch F (1954) Heat from radioactivity. In: Faul H (ed) Nuclear geology, Wiley, New York, pp 148–174

    Google Scholar 

  • Boyle RW (1982) Geochemical prospecting for thorium and uranium deposits. Elsevier, Amsterdam

    Google Scholar 

  • Brandon AD, Meen JK (1995) Nd isotopic evidence for the position of southernmost Indian terranes within East Gondwana. Precamb Res 70:269–280

    Article  Google Scholar 

  • Braun I (2006) Pan African granite magmatism in the Kerala Khondalite Belt, Southern India. J Asian Earth Sci 28:38–45

    Article  Google Scholar 

  • Braun I, Bröcker M (2004) Monazite dating of granitic gneisses and leucogranites from Kerala Khondalite Belt, Southern India: implications for the Proterozoic crustal evolution in East Gondwana. Int J Earth Sci 93:13–22

    Article  Google Scholar 

  • Braun I, Raith M, Ravindra Kumar GR (1996) Dehydration-melting phenomena in leptynitic gneisses and the generation of leucogranites: a case study from the Kerala Khondalite Belt, southern India. J Petrol 37:1285–1305

    Article  Google Scholar 

  • Braun I, Montel JM, Nicollet C (1998) Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol 146:65–85

    Article  Google Scholar 

  • Cenki B, Kriegsman LM (2005) Tectonics of the Neoproterozoic Southern Granulite Terrain, South India. Precamb Res 138:37–56

    Article  Google Scholar 

  • Chacko T, Ravindra Kumar GR, Meen JK, Rogers JJW (1992) Geochemistry of high-grade supracrustal rocks from the Kerala Khondalite Belt and adjacent massif charnockites. Precamb Res 55:469–489

    Article  Google Scholar 

  • Collins AS, Santosh M (2004) New protolith provenance, crystallization and metamorphic U–Pb zircon SHRIMP ages from southern India. In: Chetty TRK, Bhaskar Rao YJ (eds) International field workshop on the southern granulite terrane. National Geophysical Research Institute, Hyderabad, pp 73–76

    Google Scholar 

  • Dash B, Sahu KN, Bowes DR (1987) Geochemistry and original nature of Precambrian khondalites in the Eastern Ghats, Orissa, India. Trans R Soc Edinb 78:115–127

    Google Scholar 

  • Durrance EM (1986) Radioactivity in geology: principles and applications. Ellis Horwood, Chichester, 441 p

  • Fahrig WF, Eade KE, Adams JAS (1967) Abundances of radioactive elements in crystalline shield rocks. Nature 214:1002–1003

    Article  Google Scholar 

  • Förster H-J, Ray L, Förster A (2007) Radioactive accessory minerals in Pan-African granites and granulites, southern India (in preparation)

  • Fountain DM, Salisbury MH, Furlong KP (1987) Heat production and thermal conductivity of rocks from the Pikwitonei-Sachigo continental cross section, central Manitoba: implications for the thermal structure of Archaean crust. Can J Earth Sci 24:1583–1594

    Google Scholar 

  • Galson DA (1983) Heat production and temperature of the Alpine crust. Ph.D. thesis (unpublished), University of Cambridge, 171 p

  • Geological Survey of India (1998) Geological map of India, 7th edn, scale 1:2,000,000, Kolkata

  • Gray CM (1977) The geochemistry of central Australian granulites in relation to the chemical and isotopic effects of granulite facies metamorphism. Contrib Mineral Petrol 65:79–89

    Article  Google Scholar 

  • Hansen EC, Hickman MH, Grant NK, Newton RC (1985) Pan-African age of peninsular gneiss near Madurai, South India. EOS Trans Am Geophys Union 66:419–420

    Google Scholar 

  • Hansen EC, Janardhan AS, Newton RC, Prame WKBN, Ravindra Kumar GR (1987) Arrested charnockite formation in southern India and Sri Lanka. Contrib Mineral Petrol 96:225–244

    Article  Google Scholar 

  • Harris NBW, Santosh M, Taylor PN (1994) Crustal evolution in South India: constraints from Nd isotopes. J Geol 102:139–150

    Article  Google Scholar 

  • Heier KS, Thoresen K (1971) Geochemistry of the high grade metamorphic rocks, Lofoten-Vesteralen, North Norway. Geochim Cosmochim Acta 35:89–99

    Article  Google Scholar 

  • Iyer SS, Choudhury A, Vasconcellos MBA, Cordani UG (1984) Radioactive element distribution in the Archaean Granulite terrane of Jequie Bahia, Brazil. Contrib Mineral Petrol 85:95–101

    Article  Google Scholar 

  • Jöeleht A, Kukkonen IT (1998) Thermal properties of granulite facies rocks in the Precambrian basement of Finland and Estonia. Tectonophysics 291:195–203

    Article  Google Scholar 

  • Ketcham RA (1996) An improved method for determination of heat production with gamma-ray scintillation spectrometry. Chem Geol 130:175–194

    Article  Google Scholar 

  • Kovach VP, Santosh M, Sahikoval EB, Berezhnaya NG, Bindu RS, Yoshida M, Kotov AB (1998) U–Pb Zircon Age of the Puttetti Alkali Syenite, Southern India. Gondwana Res 1:408–410

    Article  Google Scholar 

  • Kröner A, Brown L (2005) Structure, composition and evolution of the South Indian and Sri Lankan granulite terrains from deep seismic profiling and other geophysical and geological investigations: a LEGENDS initiative. Gondwana Res 8:317–335

    Article  Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2007) The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth Planet Sci Lett 254:39–54. doi:10.1016/j.epsl.2006.11.018

    Article  Google Scholar 

  • Lambert IB, Heier KS (1968) Geochemical investigations of deep-seated rocks in the Australian shield. Lithos 1:30–53

    Article  Google Scholar 

  • Løvborg L, Kunzendorg H, Sørensen P, Hansen J (1971) Field determination of uranium and thorium by gamma-ray spectrometry, exemplified by measurements in the Ilímaussaq alkaline intrusion, South Greenland. Econ Geol 66:368–384

    Article  Google Scholar 

  • Mahadevan TM (2003) Geological evolution of south Indian shield—constraints on modeling. In: Ramakrishnan M (ed) Tectonics of Southern Granulite Terrain: Kuppam—Palani Geotransect. Mem Geol Soc Ind 50:25–46

  • Mareschal JC, Poirier A, Rolandone F, Bienfait G, Gariepy C, Lapointe R, Jaupart C (2000) Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador. Geophys Res Lett 27:823–826

    Article  Google Scholar 

  • Miyazaki T, Santosh M (2005) Cooling history of Puttetti Alkali Syenite Pluton, Southern India. Gondwana Res 8:567–574

    Article  Google Scholar 

  • Nair NGK, Santosh M (1985) Geochemistry and petrogenesis of the Puttetti syenite, South India. Neues Jahrbuch Miner Abh 151:213–158

    Google Scholar 

  • Newton RC, Aranovich LYa, Hansen EC, Vandenheuvel BA (1998) Hypersaline fluids in Precambrian deep-crustal metamorphism. Precamb Res 91:41–63

    Article  Google Scholar 

  • Pinet C, Jaupart C (1987) The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: geothermal implication. Geophys Res Lett 14:260–263

    Article  Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite, xenotime, garnet equilibrium in metapelites and a new monazite–garnet geothermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • Pyle JM, Spear FS (2003) Four generations of accessory phase growth in low pressure migmatites from southwest New Hampshire. Am Mineral 88:338–351

    Google Scholar 

  • Rajesh HM (2003) Outcrop-scale silicate liquid immiscibility from an alkali syenite (A-type granitoid)-pyroxenite association near Puttetti, Trivandrum Block, South India. Contrib Mineral Petrol 145:612–627

    Article  Google Scholar 

  • Rajesh HM (2004) The igneous charnockite—high K alkali calcic I-type granite—incipient charnockite association in Trivandrum block, southern India. Contrib Mineral Petrol 147:346–362

    Article  Google Scholar 

  • Rajesh HM, Santosh M (1996) Alkaline magmatism in Peninsular India. In: Santosh M, Yoshida M (eds) The Archaean and Proterozoic Terrains in Southern India within East Gondwana. Mem Gondwana Res Group 3:91–115

  • Rajesh HM, Santosh M (2004) Charnockitic magmatism in southern India. Proc Ind Acad Sci 13:565–585

    Google Scholar 

  • Ravindra Kumar GR, Srikantappa C, Hansen EC (1985) Charnockite formation at Ponmudi, southern India. Nature 313:207–209

    Article  Google Scholar 

  • Ray L (2002) Crustal thermal structure of the Southern Granulite Province, India, Ph.D. thesis (unpublished), Osmania University, India, 214 p

  • Ray L, Kumar PS, Reddy GK, Roy S, Rao GV, Srinivasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from Southern India. J Geophys Res 108:2084. doi:10.1029/2001JB000688

    Article  Google Scholar 

  • Roy S, Ray L, Kumar PS, Reddy GK, Srinivasan R (2003) Heat flow and heat production in the Precambrian gneiss–granulite province of Southern India. In: Ramakrishnan M (ed) Tectonics of Southern Granulite Terrain: Kuppam—Palani Geotransect. Mem Geol Soc India 50:177–191

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Santosh M (1989) Alkaline plutons, decompression granulites and late Proterozoic CO2 influx in Kerala, South India. Mem Geol Soc India 15:177–188

    Google Scholar 

  • Santosh M, Nair GK (1983) Petrochemistry of the Chengannoor granite, Alleppey district, Kerala. J Geol Soc India 24:291–298

    Google Scholar 

  • Santosh M, Iyer SS, Vasconcellos MBA, Enzweiler J (1989) Late Precambrian alkaline plutons in southwest India: geochronologic and rare-earth element constraints on Pan-African magmatism. Lithos 24:65–79

    Article  Google Scholar 

  • Santosh M, Kagami H, Yoshida M, Nanda-Kumar V (1992) Pan-African charnockite formation in East Gondwana: geochronologic (Sm-Nd and Rb-Sr) and petrogenetic constraints. Bull Indian Geol Assoc 25:1–10

    Google Scholar 

  • Santosh M, Yokoyama K, Biju-Sekhar S, Rogers JJW (2003) Multiple tectonothermal events in the granulite blocks of southern India revealed from EPMA dating: implications on the history of supercontinents. Gondwana Res 6:29–63

    Article  Google Scholar 

  • Santosh M, Tanaka K, Yokoyama K, Collins AS (2005a) Late Neoproterozoic–Cambrian felsic magmatism along transcrustal shear zones in southern India: U–Pb electron microprobe ages and implications for the amalgamation of the Gondwana supercontinent. Gondwana Res 8:31–42

    Article  Google Scholar 

  • Santosh M, Collins AS, Morimoto T, Yokoyama K (2005b) Depositional constraints and age of metamorphism in southern India: U–Pb chemical (EPMA) and isotopic (SIMS) ages from the Trivandrum Block. Geol Mag 142:255–268

    Article  Google Scholar 

  • Santosh M, Morimoto T, Tsutsumi Y (2006) Geochronology of the Kerala Khondalite Belt of Trivandrum Block, southern India: Electron Probe ages and implications for Gondwana Tectonics. Gondwana Res 9:261–278

    Article  Google Scholar 

  • Sighinolfi GP, Sakai T (1977) Uranium and Thorium in Archean granulite facies terrains of Bahia (Brazil). Geochim J 11:33–39

    Google Scholar 

  • Sighinolfi GP, Figueiredo MCH, Fyfe WS, Kronberg BI, Tanner Oliveira MAF (1981) Geochemistry and petrology of the Jequie granulite complex (Brazil): an Archean basement complex. Contrib Mineral Petrol 78:263–271

    Article  Google Scholar 

  • Silver LT, Woodhead JA, Williams IS (1982) Primary mineral distribution and secondary mobilization of uranium and thorium in radioactive granites. In: Uranium exploration methods. International atomic energy agency/nuclear energy agency, Paris, pp 355–367

  • Singh HN, Shankar D, Neelakandan VN, Singh VP (2007) Distribution patterns of natural radioactivity and delineation of anomalous radioactive zones using in situ radiation observations in southern Tamil Nadu, India. J Hazard Mater 141:264–272

    Article  Google Scholar 

  • Soman K (2002) Geology of Kerala, Geological Society of India, 336p

  • Taylor SR, Rudnick RL, McLennan SM, Eriksson KA (1986) Rare earth element patterns in Archean high-grade metasediments and their tectonic significance. Geochim Cosmochim Acta 50:2267–2279

    Article  Google Scholar 

  • Tieh TT, Ledger EB (1981) Fission track study of uranium in two granites of Central Texas. Contrib Mineral Petrol 76:12–16

    Article  Google Scholar 

  • Vitorello I, Hamza VM, Pollack HN (1980) Terrestrial heat flow in the Brazilian highlands. J Geophys Res 85:3778–3788

    Article  Google Scholar 

  • Weaver BL (1980) Rare-earth element geochemistry of Madras granulites. Contrib Mineral Petrol 71:271–279

    Article  Google Scholar 

  • Weaver BL, Tarney J (1983) Elemental depletion in Archaean granulite facies rocks. In: Atherton MP, Gribble CD (eds) Migmatites, melting and metamorphism. Shiva, Nantwich, pp 250–263

    Google Scholar 

  • Wilson AF (1978) Comparison of some of the geochemical features and tectonic setting of Archean and Proterozoic granulites with particular reference to Australia In: Windley BF, Naqvi SM (eds) Archaean geochemistry, developments in Precambrian geology 1, Elsevier, Amsterdam, pp 241–267

    Google Scholar 

Download references

Acknowledgments

We thank the Department of Science and Technology, Govt. of India, for funding systematic heat flow and heat production studies in south India (ESS/16/085/97 and ESS/16/148/2001). G.K. Reddy helped in data acquisition during the early part of the work. SR benefited from the International Heat Flow Commission and the Czech Academy of Sciences during the Sixth International Heat Flow Meeting (2006) held at Bykov, Czech Republic. We are indebted to R.U.M. Rao for help and encouragement during data acquisition, processing and interpretation. We thank T.M. Mahadevan, Richard Ketcham and Paul Gettings for constructive and helpful reviews. The study was supported by V.P. Dimri, Director, NGRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukanta Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, L., Roy, S. & Srinivasan, R. High radiogenic heat production in the Kerala Khondalite Block, Southern Granulite Province, India. Int J Earth Sci (Geol Rundsch) 97, 257–267 (2008). https://doi.org/10.1007/s00531-007-0278-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0278-8

Keywords

Navigation