Skip to main content
Log in

Radiogenic heat production in rocks from the Sabinas Basin (northeastern Mexico) determined by in situ gamma radiation measurements

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In situ gamma radiation measurements were performed to calculate the radiogenic heat production of sedimentary and igneous rocks from the Sabinas Basin (northeastern Mexico). The sedimentary rocks include Cretaceous shales, sandstones, and limestones. The igneous rocks consist of basalts and granodiorites (Tertiary age). The basalts belong to different volcanic fields (Las Esperanzas, Ocampo, and Las Coloradas), and the granodiorites belong to the Candela-Monclova magmatic belt (Marcelinos, Pánuco, Colorado, and Providencia intrusions). The studied rocks samples yielded values of up to 13.4 ppm, 47.3 ppm, and 9.1% for uranium (U), thorium (Th), and potassium (K), respectively, and their radiogenic heat production (RHP) values ranged from 0.11 to 6.42 µWm−3. The studied rocks were accordingly classified as having low (< 2 µWm−3), moderate (2–4 µWm−3), and high (> 4 µWm−3) RHP. Most studied rocks were characterized by a low heat production, and only 12% of the measurements indicated samples with moderate and high heat production rates. These latter rocks samples are represented by clastic sedimentary rocks such as shale of the Olmos Formation Maastrichtian age and sandstone of the Pátula Formation Hauterivian–Barremian age, and granodiorites. The highest RHP values in the sedimentary rocks are related to quartz, K-feldspars, and clay contents, and their location of deep faults. The RHP values of granodiorites are associated with their K-feldspar, sphene, zircon, and apatite contents. Such values are different in each of the intrusions and reach the highest magnitudes in the Marcelinos intrusion. The three volcanic fields reported differences in the RHP values, associated with K-feldspar and apatite, and with high and low basement blocks of the Sabinas Basin. The relationship of the RHP values with previously reported heat flow zones indicates the radiogenic contribution of the studied rocks to the heat flow in such basin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abbady AGE, Al-Ghamdi AH (2018) Heat production rate from radioactive elements of granite rocks in north and southeastern Arabian Shield Kingdom of Saudi Arabia. J Radiat Res Appl Sci 11:281–290. https://doi.org/10.1016/j.jrras.2018.03.002

    Article  Google Scholar 

  • Adagunodo TA, Bayowa OG, Usikalu MR, Ojoawo AI (2019) Radiogenic heat production in the coastal plain sands of Ipokia, Dahomey Basin, Nigeria. MethodsX 6:1608–1616. https://doi.org/10.1016/j.mex.2019.07.006

    Article  Google Scholar 

  • Aisabokhae J, Tampul H (2020) Statistical variability of radiation exposures from Precambrian basement rocks, NW Nigeria: implication on radiogenic heat production. Sci Afr 10:e00577. https://doi.org/10.1016/j.sciaf.2020.e00577

    Article  Google Scholar 

  • Akingboye AS, Ogunyele AC, Jimoh AT, Adaramoye OB, Adeola AO, Ajayi T (2021) Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environ Earth Sci 80:228. https://doi.org/10.1007/s12665-021-09516-7

    Article  Google Scholar 

  • Aranda-Gómez JJ, Luhr JF, Housh TB, Valdez-Moreno G, Chávez-Cabello G (2005) El volcanismo tipo intraplaca del Cenozoico tardío en el centro y norte de México: una revisión. Bol Soc Geol Mex 57(3):187–225. https://doi.org/10.18268/bsgm2005v57n3a1

    Article  Google Scholar 

  • Barboza-Luna D, Martínez-Ramos CJ, Santiago-Carrasco B, Izaguirre-Ramos MA, Gracia-Valadez MJ (2008) Carta geológico-minera Tlahualilo de Zaragoza, G13-6, Coahuila, Durango y Chihuahua, 1:250,000. Servicio Geológico Mexicano. 1 mapa

  • Batista-Rodríguez JA, Almaguer-Carmenates Y, Martínez-González JD (2017a) Interpretation of aeromagnetic data using GIS to evaluate the geotectonic regime of the Sabinas Basin. Earth Sci Res J 21(4):175–181. https://doi.org/10.15446/esrj.v21n4.57924

    Article  Google Scholar 

  • Batista-Rodríguez JA, Proenza-Fernández JA, Rodríguez-Vega A, López-Saucedo F, Cázares-Carreón KI (2017b) Magnetic susceptibility and natural gamma radioactivity as indirect proxies for characterization of sandstones and limestones of Sabinas Basin. Geofizika 34(1):19–43. https://doi.org/10.15233/gfz.2017.34.6

    Article  Google Scholar 

  • Batista-Rodríguez JA, Niño-Rodríguez E, Rodríguez-Riojas PA, Díaz-Martínez R, Rodríguez-Vega A, López-Saucedo F (2020) In situ magnetic susceptibility and gamma radiation data in the Candela-Monclova intrusive belt, Northeast Mexico: case studies of the Cerro Colorado and Cerro Marcelinos pluton. Turk J Earth Sci 29:579–595. https://doi.org/10.3906/yer-1905-21

    Article  Google Scholar 

  • Carrillo-de la Cruz JL, Prol-Ledesma RM, Gómez-Rodríguez D, Rodríguez-Díaz AA (2020) Analysis of the relation between bottom hole temperature data and Curie temperature depth to calculate geothermal gradient and heat flow in Coahuila, Mexico. Tectonophysics 780:228397. https://doi.org/10.1016/j.tecto.2020.228397

    Article  Google Scholar 

  • Carrillo-de la Cruz JL, Prol-Ledesma RM, Gabriel G (2021) Geostatistical mapping of the depth to the bottom of magnetic sources and heat flow estimations in Mexico. Geothermics 97:102225. https://doi.org/10.1016/j.geothermics.2021.102225

    Article  Google Scholar 

  • Chávez-Cabello G, Aranda-Gómez JJ, Molina-Garza RS, Cossío-Torres T, Arvizu-Gutiérrez IR, González-Naranjo GA (2005) La falla San Marcos: una estructura jurásica de basamento Multirreactivada del noreste de México. Bol Soc Geol Mex 57:27–52. https://doi.org/10.18268/bsgm2005v57n1a2

    Article  Google Scholar 

  • Cui Y, Zhu C, Qiu N, Tang B, Guo S (2019) Radioactive heat production and terrestrial heat flow in the Xiong’an area, North China. Energies 12(24):4608. https://doi.org/10.3390/en12244608

    Article  Google Scholar 

  • Dostal J, Dupuy C, Chikhauoi M, Zentilli M (1984) Uranium and thorium in Late Proterozoic volcanic rocks from northwestern Africa. Chem Geol 42:297–306

    Article  Google Scholar 

  • Eguiluz de Antuñano S (2001) Geologic evolution and gas resources of the Sabinas Basin in Northeastern Mexico. In: Bartolini C, Buffler, RT, Cantú-Chapa A (eds) The western Gulf of Mexico Basin: tectonics, sedimentary basins, and petroleum systems, 75. AAPG Mem, pp 241–270. https://doi.org/10.1306/M75768C10.

  • Fuentes-Guzmán EF (2016) Metalogenia de la mina de Pánuco, Coahuila, México. Master’s Thesis, National Autonomous University of Mexico

  • González-Ramos A, Martínez-Ramos C, Izaguirre-Ramos MA, Barboza-Luna D, Santiago-Carrasco B (2008) Carta geológico-minera Monclova, G14-4, Coahuila y Nuevo León, 1:250,000. Servicio Geológico Mexicano. 1 mapa.

  • Hasterok D, Webb J (2017) On the radiogenic heat production of igneous rocks. Geosci Front 8(5):919–940. https://doi.org/10.1016/j.gsf.2017.03.006

    Article  Google Scholar 

  • Hasterok D, Gard M, Webb J (2018) On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks. Geosci Front 9:1777–1794. https://doi.org/10.1016/j.gsf.2017.10.012

    Article  Google Scholar 

  • Herrera-León MA (2019) Petrografía y geoquímica del intrusivo Colorado, Cinturón Candela-Monclova, provincial alcalina oriental mexicana. Bachelor's Thesis, Autonomous University of Nuevo León, México

  • Iglesias ER, Torres RJ, Martínez-Estrellas JI, Reyes-Picasso N (2015) Summary of the 2014 assessment of medium-to-low temperature Mexican geothermal resources. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 10–25. https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/16081.pdf. Accessed April 2015

  • International Atomic Energy Agency, IAEA (2003) Guidelines for Radioelement Mapping Using Gamma Ray Spectrometry Data, IAEA-TECDOC-1363, IAEA, Vienna, Austria. https://www-pub.iaea.org/mtcd/publications/pdf/te_1363_web.pdf. Accessed 23 Feb 2021. Accessed 01 Nov 2022

  • Loucks RG, Reed RM, Ko LT, Zahm CK, Larson TE (2021) Micropetrographic characterization of a siliciclastic-rich chalk; Upper Cretaceous Austin Chalk Group along the onshore northern Gulf of Mexico, USA. Sediment Geol 412:105821. https://doi.org/10.1016/j.sedgeo.2020.105821

    Article  Google Scholar 

  • Lucas SG, Krainer K, Spielmann JA, Durney K (2010) Cretaceous stratigraphy, paleontology, petrography, depositional environments, and cycle stratigraphy at Cerro de Cristo Rey, Doña Ana County, New Mexico. N M Geol 32(4):103–130

    Google Scholar 

  • Martínez-Estrella I, Torres RJ, Iglesias ER (2005) A GIS-Bases Information System for Moderate-to-Low-Temperature Mexican Geothermal Resources. Proceedings World Geothermal Congress 2005, Antalya, Turkey, 24–29. https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/1725.pdf. Accessed Apr 2005

  • Martínez-Rodríguez L, Miranda A, Pérez MA, Romero I, Sánchez E (2008) Carta geológico-minera Nueva Rosita, G14-1, Coahuila y Nuevo León, 1: 250 000. Servicio Geológico Mexicano. 1 mapa

  • McCay AT, Harley TL, Younger PL, Sanderson DCW, Cresswell AJ (2014) Gamma-ray spectrometry in geothermal exploration: state of the art techniques. Energies 7:4757–4780. https://doi.org/10.3390/en7084757

    Article  Google Scholar 

  • Nagihara S, Sclater J, Phillips J, Behrens E, Lewis T, Lawver L, Nakamura Y, Garcia-Abdeslem J, Maxwell A (1996) Heat flow in the western abyssal plain of the Gulf of Mexico: implications for thermal evolution of the old oceanic lithosphere. J Geophys Res Solid Earth 101(B2):2895–2913. https://doi.org/10.1029/95JB03450

    Article  Google Scholar 

  • Netto A (2017) Delineating the ocean-continent crustal boundary in the Gulf of Mexico using Heat Flow Measurements. Master’s Thesis, Texas Tech University, US. https://ttu-ir.tdl.org/bitstream/handle/2346/73140/NETTO-THESIS-2017.pdf?sequence=1

  • Ocampo-Díaz YZE (2013) Análisis petrográfico y estadístico multivariado para discriminar las áreas fuente de la Formación La Casita del Jurásico Tardío-Cretácico Temprano y la Arcosa Patula del Cretácico Temprano en el Noreste de México. Bol Soc Geol Mex 65(3):609–630

    Article  Google Scholar 

  • Ocampo-Díaz YZE, Talavera-Mendoza O, Jenchen U, Valencia VA, Medina-Ferrusquia HC, Guerrero-Suastegui M (2014) Procedencia de la Formación La Casita y la Arcosa Patula: implicaciones para la evolución tectono-magmática del NE de México entre el Carbonífero y el Jurásico. Rev Mex Cienc Geol 31(1):45–63

    Google Scholar 

  • Padilla y Sánchez RJ (1986) Post-Paleozoic tectonics of Northeast Mexico and its role in the evolution of the Gulf of Mexico. Geofis Int 25:157–206

    Google Scholar 

  • Pérez-De la Cruz JA, De los Santos-Montaño J, Arzabala-Molina J, Tarín-Zapata G (2008) Carta geológico-minera Ocampo, G13-3, Coahuila y Chihuahua, 1:250,000. Servicio Geológico Mexicano. 1 mapa

  • Piedad-Sánchez N., González-Partida E, Vega-González M, De la Rosa-Rodríguez G, Garza-Blackaller S, Muñoz-García JL, Corona-Esquivel R (2015) Madurez térmica del carbón en un área de Las Esperanzas, Coah., Municipio de Melchor Múzquiz, Coah. XXI Convención Internacional de Minería, Acapulco, Guerrero, México. 127–132. https://www.geomin.com.mx/publicaciones/pub4_XXXI%20Conv_AIMMGM%20Memorias.pdf. Accessed Sept 2023

  • Prol-Ledesma RM, Morán-Zenteno DJ (2019) Heat flow and geothermal provinces in Mexico. Geothermics 78:183–200. https://doi.org/10.1016/j.geothermics.2018.12.009

    Article  Google Scholar 

  • Prol-Ledesma RM, Carrillo-de la Cruz JL, Torres-Vera MA, Membrillo-Abad AS, Espinoza-Ojeda OM (2018) Heat flow map and geothermal resources in Mexico. Terra Digit 2(2):1–15. https://doi.org/10.22201/igg.25940694.2018.2.51.105

    Article  Google Scholar 

  • Romo-Ramírez JR, Herrera-Monreal JC, Rodríguez-Rodríguez JS, Larrañaga-Obregón G (2008) Carta geológico-minera San Miguel, H13-12, Coahuila y Chihuahua, 1:250 000. Servicio Geológico Mexicano. 1 mapa.

  • Radiation Solution Inc. (2015) RS-125/230 User Manual. Revision 1.05—December 2015. https://www.aseg.org.au/sites/default/files/RS-125%20RS-230_User_Manual%20%28GR%29.pdf. Accessed 01 Nov 2022.

  • Rybach L (1988) Determination of heat production rate. In: Hänel R, Rybach L, Stegena I (eds) Handbook of terrestrial heat-flow density determination. Kluwer academic Publishers, Amsterdam, pp 125–142

    Google Scholar 

  • Santiago-Carrasco B, Ontiveros-Escobedo E, Martínez-Rodríguez L, Herrera-Monreal JC (2008) Carta geológico-minera Piedras Negras, H14-10, Coahuila, 1:250,000. Servicio Geológico Mexicano. 1 mapa

  • Slagstad T (2008) Radiogenic heat production of Archean to Permian geological provinces in Norway. Norw J Geol 88:149–166

    Google Scholar 

  • Tolentino-Álvarez J (2022) Caracterización geológica, geofísica y geoquímica de manifestaciones geotérmicas del estado de Coahuila. Master’s Thesis, Autonomous University of Coahuila, Mexico

  • Torres de la Cruz FJ, Chacón-Baca E, Chávez-Cabello G, Hernández-Ocaña MI (2020) Revisiting the Cupidito unit (Cupido Formation) along peritidal carbonates from northeastern Mexico. Rev Mex Cienc Geol 37(1):9–25. https://doi.org/10.22201/CGEO.20072902E.2020.1.1095

    Article  Google Scholar 

  • Torres-Rodríguez V, Arellano-Gómez V, Barragán-Reyes RM, González-Partida E, Herrera-Franco JJ, Santoyo-Gutiérrez E, Venegas-Salgado S (1993) Geotermia en México. Programa Universitario de Energía, Universidad Nacional Autónoma de México

  • Valdez-Moreno G (2001) Geoquímica y petrología de las rocas ígneas de los campos volcánicos Las Esperanzas y Ocampo, Coahuila, México. Master’s Thesis, National Autonomous University of Mexico

  • Valdez-Moreno G, Aranda-Gómez JJ, Ortega-Rivera A (2011) Geoquímica y petrología del campo volcánico de Ocampo, Coahuila, México. Bol Soc Geol Mex 63(2):235–252

    Article  Google Scholar 

  • Valdez-Reyes MA (2001) Petrografía y geoquímica del intrusivo Cerro Providencia, margen este del Cinturón Candela-Monclova, provincial alcalina oriental mexicana. Master’s Thesis, Autonomous University of Nuevo León, México

  • Vila M, Fernández M, Jiménez-Munt I (2010) Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling. Tectonophysics 490:152–164. https://doi.org/10.1016/2Fj.tecto.2010.05.003

    Article  Google Scholar 

  • Wilson JL (1990) Basement structural controls on Mesozoic carbonates facies in northeastern Mexico: a review. In: Tucker ME, Wilson JL, Crevello PD, Sarg JR, Read JF (eds.), Carbonate platforms, facies, sequences and evolution, vol 9. IAS, pp 235–255

  • Wolaver BD, Crossey LJ, Karlstrom KE, Banner JL, Cardenas MB, Gutiérrez-Ojeda C, Sharp JM Jr (2013) Identifying origins of and pathways for spring waters in a semiarid basin using He, Sr, and C isotopes: Cuatrociénegas Basin, Mexico. Geosphere 9(1):113–125. https://doi.org/10.1130/GES00849.1

    Article  Google Scholar 

  • Zhu Ch, Xu M, Qiu N, Hu S (2018) Heat production of sedimentary rocks in the Sichuan basin, Southwest China. Geochem J 52(5):401–413. https://doi.org/10.2343/geochemj.2.0530

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Autonomous University of Coahuila and particularly the Higher School of Engineering for their support with this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the work.

Corresponding author

Correspondence to J. A. Batista-Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista-Rodríguez, J.A., Tolentino-Álvarez, J., Batista-Cruz, R.Y. et al. Radiogenic heat production in rocks from the Sabinas Basin (northeastern Mexico) determined by in situ gamma radiation measurements. Environ Earth Sci 82, 458 (2023). https://doi.org/10.1007/s12665-023-11157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-023-11157-x

Keywords

Navigation