Skip to main content
Log in

Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Harz Mountains and the adjacent Subhercynian Cretaceous Basin figure as the most prominent surface representative for Late Cretaceous inversion structures in Central Europe. Facies, depositional architecture and provenance of the basin fill reflect mechanisms and timing of the exhumation of the Harz. From Hauterivian to Early Santonian there is no evidence for detrital input from the nearby Harz area. Sediments are mature quartzarenites derived from Paleozoic basement rocks and/or recycled Permian to Mesozoic sedimentary rocks. This situation changed drastically in Middle to Late Santonian when freshly exhumed and eroded Mesozoic sedimentary cover rocks of the Harz were delivered into the basin. Feldspar and lithoclasts reflect erosion of Triassic and, in places, Jurassic to Turonian strata. Apatite and garnet in heavy mineral spectra are derived from largely unweathered Lower Triassic Buntsandstein as indicated by apatite and garnet chemistry. In Early Campanian, Paleozoic lithoclasts indicate erosion cutting down into the basement of the Harz. Simultaneous strong decrease of feldspar, garnet and apatite suggest an almost complete removal of the 2–3 km thick Mesozoic cover of the Harz within only 2–4 Myr. This translates into an exhumation rate of approximately 1 mm/a consistent with apatite fission track data from granitoid rocks of the Harz Mountains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Appel D (1981) Petrographie und Genese der Sandsteine des Unter-und Mittelräts im nördlichen Harzvorland (Ostniedersachsen). Mitt Geol Inst Univ Hannover 20:133

    Google Scholar 

  • Baldschuhn R, Kockel F (1999) Das Osning-Lineament am Südrand des Niedersachsen-Beckens. Z Dt Geol Ges 150(4):673–695

    Google Scholar 

  • Baldschuhn R, Frisch U, Kockel F (1985) Inversionsstrukturen in NW-Deutschland und ihre Genese. Z Dt Geol Ges 136:129–139

    Google Scholar 

  • Baldschuhn R, Best G, Kockel F (1991) Inversion tectonics in the north-west German basin. In: Spencer AM (ed) Generation, accumulation and production of Europe’s hydrocarbons. Eur Assoc Pet Geosci, Special publication 1:149–159

  • Bartholomäus WA, Reich M, Krüger FJ, Ansorge J, Wings O (2004) Das Liefergebiet der Magensteine von Baddeckenstedt (Cenoman, Harzvorland). Bochum Geowiss Arb 4:103–131

    Google Scholar 

  • Belousova EA, Walters S, Griffin WL, O’Reilly SY (2001) Trace element signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland. Aus J Earth Sci 48:603–619

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Article  Google Scholar 

  • Brink HJ (2002) Die Anomalien von Bramsche–wieder eine offene Frage? Erdöl, Erdgas, Kohle 118:18–22

    Google Scholar 

  • Deer WA, Howie RA, Zussmann J (1992) An introduction to the rock-forming minerals. Longman Scientific and Technical, Essex, pp 696

    Google Scholar 

  • DEKORP-BASIN Research Group (1999) Deep crustal structure of the Northeast German basin: new DEKORP-BASIN ‘96 deep-profiling results. Geology 27:55–58

    Article  Google Scholar 

  • Ernst G, Kohring R, Rehfeld U (1996) Gastrolithe aus dem Mittel-Cenomanium von Baddeckenstedt (Harzvorland) und ihre paläogeographische Bedeutung für eine prä-ilsedische Harzinsel. Mitt Geol Paläont Inst Univ Hamburg 77:503–543

    Google Scholar 

  • Ewald J (1862) Die Lagerung der oberen Kreidebildungen am Nordrand des Harzes. Monatsberichte der Königlich-Preußischen Akademie der Wissenschaften zu, Berlin, pp 674–680

    Google Scholar 

  • Fischer C, Dunkl I, Gaupp R, von Eynatten H, Wijbrans JR (2006) Age constraints to the diagenetic history of Rotliegend sandstones from the Central European Basin. Schriftenr Dt Ges Geowiss 45:68 (abstract)

    Google Scholar 

  • Franzke HJ, Voigt T, von Eynatten H, Brix MR, Burmester G (2004) Geometrie und Kinematik der Harznordrandstörung, erläutert an Profilen aus dem Gebiet von Blankenburg. Geowiss Mitt Thüringen 11:39–62

    Google Scholar 

  • Gabriel G, Jahr T, Jentzsch G, Melzer J (1997) Deep structure and evolution of the Harz Mountains: results of three-dimensional gravity and finite-element modeling. Tectonophysics 270:279–299

    Article  Google Scholar 

  • Ganssloser M (2000) Schwermineralanalytische Dokumentation rhenoherzynischer Grauwacken—ein Beitrag zur Liefergebiets-Interpretation. Z Dt Geol Ges 151(1–2):127–170

    Google Scholar 

  • Gradstein FM et al (2004) A geological time scale 2004. Geological Survey of Canada, Miscellaneous Report 86

  • Henry DJ, Guidotti CV (1985) Tourmaline as a petrogenetic indicator mineral: an example from the staurolite-grade metapelites of NW Maine. Am Mineral 70:1–15

    Google Scholar 

  • Hubert JF (1962) A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J Sediment Petrol 32:440–450

    Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Petrol 54:103–116

    Google Scholar 

  • Karpe W (1973) Zur Feinstratigraphie der oberkretazischen Karbonatgesteine in der östlichen subherzynen Kreidemulde. Z Geol Wiss 1(3):269–292

    Google Scholar 

  • Kockel F (ed) (1996) Geotektonischer Atlas von NW-Deutschland. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover

  • Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Neth JGeosci/Geologie en Mijnbouw 82:367–382

    Google Scholar 

  • Kölbel H (1944) Die tektonische und paläogeographische Entwicklung des Salzgitterer Gebietes. Abhandlungen des Reichsamtes für Bodenforschung. Neue Folge 207:1–100

    Google Scholar 

  • König S, Wrede V (1994) Zur Tektonik der Harzränder. Z Dt Geol Ges 145:153–171

    Google Scholar 

  • Kossow D, Krawczyk C (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Mar Pet Geol 19:601–618

    Article  Google Scholar 

  • Langbein R (1985) Fluvial-marine transitional environment influencing the diagenesis in the Buntsandstein of Thuringia. Lect Notes Earth Sci 10:561–590

    Article  Google Scholar 

  • Leggewie R, Füchtbauer H, El-Najjar R (1977) Zur Bilanz des Buntsandsteins (Korngrössenverteilung und Gesteinsbruchstücke). Geol Rundsch 66:551–577

    Article  Google Scholar 

  • Little AL, Cox S, Vry JK, Batt G (2005) Variations in exhumation level and uplift rate along the oblique-slip Alpine fault, central Southern Alps, New Zealand. Geol Soc Am Bull 117:707–723

    Article  Google Scholar 

  • Mange MA, Maurer HFW (1991) Schwerminerale in Farbe. Enke, Stuttgart, pp 148

    Google Scholar 

  • Mazur S, Scheck-Wenderoth M, Krzywiec P (2005) Different modes of the Late Cretcaeous—early tertiary inversion in the North German and Polish basins. Int J Earth Sci 94:782–798

    Article  Google Scholar 

  • McBride EF (1963) A classification of common sandstones. J Sediment Petrol 33:664–669

    Google Scholar 

  • Mohr K (1993) Geologie und Minerallagerstätten des Harzes. Schweizerbart, Stuttgart, pp 496

    Google Scholar 

  • Morton AC (1991) Geochemical studies of detrital heavy minerals and their application to provenance research. In: Morton AC, Todd SP, Haughton PDW (eds) Developments in sedimentary provenance studies, vol 57. Geological Society of London, Special Publication, London, pp 31–45

    Google Scholar 

  • Mutterlose J (2000) Unterkreide im Niedersächsischen Becken. In: Stratigraphische Kommission Deutschlands (eds) Stratigraphie von Deutschland III—Die Kredie der Bundesrepublik Deutshland, vol 226. Courier Forschungsinstitut Senckenberg, Frankfurt, pp 78–101

  • Otto V (2003) Inversion related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics 373:107–123

    Article  Google Scholar 

  • Riedel L (1940) Über eine tektonische Phase an der Wende Quadraten-Mucronaten-Senon (Peiner Phase) in Nordwestdeutschland. Z Dt Geol Ges 92:253–258

    Google Scholar 

  • Roll A (1953) Der Harzrand bei Bad Harzburg. Neues Jb Geol Paläontol 97:90–98

    Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003) Salt movements in the Northeast German Basin and its relation to major post-Permian tectonic phases—results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics 361:277–299

    Article  Google Scholar 

  • Senglaub Y, Brix MR, Adriasola AC, Littke R (2005) New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis. Int J Earth Sci 94:876–896

    Article  Google Scholar 

  • Sindowski HH (1957) Schüttungsrichtungen und Mineral-Provinzen im westdeutschen Buntsandstein. Geol Jb 73:277–294

    Google Scholar 

  • Stackebrandt W, Franzke HJ (1989) Alpidic reactivation of the Variscan consolidated lithosphere: the activity of some fracture zones in central Europe. Z Geol Wiss 7:699–712

    Google Scholar 

  • Stille H (1924) Grundfragen der vergleichenden Tektonik. Bornträger, Berlin, pp 443

    Google Scholar 

  • Stratigraphische Kommission Deutschlands (eds) (2000) Stratigraphie von Deutschland III: Die Kreide der Bundesrepublik Deutschland, vol 226. Courier Forschungsinstitut Senckenberg, Frankfurt, pp 207

  • Thomson SN (2001) Using apatite fission-track thermochronology to investigate Late Cretaceous tectonic inversion of the Variscan basement blocks of central Germany: examples from the Harz Mountains and Thüringer Wald. Exkursionsführer Veröff Ges Geowiss 214:223–224

    Google Scholar 

  • Thomson SN, Zeh A (2000) Fission-track thermochronology of the Ruhla crystalline complex: new constraints on the post-variscan thermal evolution of the NW Saxo-Bohemian Massif. Tectonophysics 324:17–35

    Article  Google Scholar 

  • Thomson SN, Brix MR, Carter A (1997) Late Cretaceous denudation of the Harz Massif assessed by apatite fission-track analysis. Schriftenr der Dt Geol Ges 2: pp 115 (abstract)

    Google Scholar 

  • Thon H-G (1963) Sedimentpetrographische Untersuchungen zur Gliederung des Buntsandsteins im südöstlichen Harzvorland. Freib Forsch C 156:84

    Google Scholar 

  • Tiwari RN, Roy RN (1973) Sedimentpetrologische Untersuchungen an oberkretazischen Sandsteinen der subherzynen Kreidemulde. Freib Forsch C 302:27–135

    Google Scholar 

  • Tröger K-A (1995) Die Subhercyne Oberkreide—Beziehungen zum Variscischen Grundgebirge und Stellung innerhalb Europas. Nova Acta Leopold, NF 71:217–231

    Google Scholar 

  • Tröger K-A, Kurze M (1980) Zur paläogeographischen Entwicklung des Mesozoikums im Südteil des Subherzynen Beckens. Z Geol Wiss 8(10):1247–1265

    Google Scholar 

  • Vinx R, Voigt E (2001) Freiliegendes Harzgrundgebirge schon im Mittel-Cenoman?—Neubewertung von Gastrolithen aus Baddeckenstedt (nördliches Harzvorland). Mitt Geol-Paläontol Ins Univ Hamburg 85:23–46

    Google Scholar 

  • Voigt E (1929) Die Lithogenese der Flach- und Tiefwassersedimente des jüngeren Oberkreidemeeres. Jb Halleschen Verb Erdwiss NF 8:1–162

    Google Scholar 

  • Voigt E (1963) Über Randtröge an Schollenrändern und ihre Bedeutung im Gebiet der Mitteleuropäischen Senke und angrenzender Gebiete. Z Dt Geol Ges 114:378–418

    Google Scholar 

  • Voigt T, von Eynatten H, Franzke HJ (2004) Late Cretaceous unconformities in the Subhercynian Cretaceous Basin (Germany). Acta Geologica Polonica 54:765–696

    Google Scholar 

  • Voigt T, Wiese F, von Eynatten H, Franzke HJ, Gaupp R (2006) Fazies evolution of syntectonic Upper Cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). Z Dt Ges Geowiss 157:203–244

    Google Scholar 

  • von Eynatten H (2003) Petrography and chemistry of sandstones from the Swiss Molasse Basin: an archive of the Oligo–Miocene evolution of the Central Alps. Sedimentology 50:703–725

    Article  Google Scholar 

  • von Eynatten H, Gaupp R (1999) Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis, and mineral chemistry. Sedimentary Geol 124:81–111

    Article  Google Scholar 

  • von Eynatten H, Wijbrans JR (2003) Precise tracing of exhumation and provenance using Ar/Ar-geochronology of detrital white mica: the example of the Central Alps. In: McCann T, Saintot A (eds) Tracing tectonic deformation using the sedimentary record, vol 208. Geological Society of London, Special Publications, London, pp 289–305

    Google Scholar 

  • Walter R (1992) Geologie von Mitteleuropa. Schweizerbart, Stuttgart, pp 561

  • Wiese F, Wood CJ, Kaplan U (2004) 20 years of event stratigraphy in NW Germany; advances and open questions. Acta Geologica Polonica 54:639–656

    Google Scholar 

  • Wilmsen M (2003) Sequence stratigraphy and palaeoceanography of the Cenomanian stage in northern Germany. Cretaceous Res 24:525–568

    Article  Google Scholar 

  • Wrede V (1988) Der nördliche Harzrand—flache Abscherbahn oder wrech-fault-system? Geol Rundsch 77:101–114

    Article  Google Scholar 

  • Wunderlich HG (1953) Bau und Entwicklung des Harz-Nordrandes bei Bad Harzburg. Geol Rundsch 41:200–224

    Article  Google Scholar 

  • Wunderlich HG (1957) Liefergebiete und Schüttungsrichtungen des mitteldeutschen Buntsandsteins nach Masgabe der Schwermineralführung. Neues Jb GeoPaläontol 3:123–143

    Google Scholar 

  • Ziegler PA (1987) Late Cretaceous and Cenozoic intra-plate compressional deformations in the Alpine foreland—a geodynamic model. Tectonophysics 137:389–420

    Article  Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij B.V. Geological Society, London

    Google Scholar 

  • Zuffa GG (1980) Hybrid arenites: their composition and classification. J Sediment Petrol 50:21–29

    Google Scholar 

Download references

Acknowledgements

The study was funded by the Deutsche Forschungsgemeinschaft (DFG grants Ga 457/6-1 and 6-2). We thank Sigrid Bergmann and Frank Linde (Jena) for continuous support in sample preparation, and Andreas Kronz and Silke Triebold (Göttingen) for assistance with the microprobe analysis. Field work and data interpretation strongly benefited from exhaustive discussions with Gerhard Beutler, István Dunkl, Jonas Kley and Franz Kockel. We appreciate Andy Morton’s comments on an earlier draft of the manuscript. Constructive comments by the journal reviewers Maria Mange and Carita Augustsson helped to shape the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar von Eynatten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Eynatten, H., Voigt, T., Meier, A. et al. Provenance of Cretaceous clastics in the Subhercynian Basin: constraints to exhumation of the Harz Mountains and timing of inversion tectonics in Central Europe. Int J Earth Sci (Geol Rundsch) 97, 1315–1330 (2008). https://doi.org/10.1007/s00531-007-0212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0212-0

Keywords

Navigation