Skip to main content
Log in

Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Several selected seismic lines are used to show and compare the modes of Late-Cretaceous–Early Tertiary inversion within the North German and Polish basins. These seismic data illustrate an important difference in the allocation of major zones of basement (thick-skinned) deformation and maximum uplift within both basins. The most important inversion-related uplift of the Polish Basin was localised in its axial part, the Mid-Polish Trough, whereas the basement in the axial part of the North German Basin remained virtually flat. The latter was uplifted along the SW and to a smaller degree the NE margins of the North German Basin, presently defined by the Elbe Fault System and the Grimmen High, respectively. The different location of the basement inversion and uplift within the North German and Polish basins is interpreted to reflect the position of major zones of crustal weakness represented by the WNW-ESE trending Elbe Fault System and by the NW-SE striking Teisseyre-Tornquist Zone, the latter underlying the Mid-Polish Trough. Therefore, the inversion of the Polish and North German basins demonstrates the significance of an inherited basement structure regardless of its relationship to the position of the basin axis. The inversion of the Mid-Polish Trough was connected with the reactivation of normal basement fault zones responsible for its Permo-Mesozoic subsidence. These faults zones, inverted as reverse faults, facilitated the uplift of the Mid-Polish Trough in the order of 1–3 km. In contrast, inversion of the North German Basin rarely re-used structures active during its subsidence. Basement inversion and uplift, in the range of 3–4 km, was focused at the Elbe Fault System which has remained quiescent in the Triassic and Jurassic but reproduced the direction of an earlier Variscan structural grain. In contrast, N-S oriented Mesozoic grabens and troughs in the central part of the North German Basin avoided significant inversion as they were oriented parallel to the direction of the inferred Late Cretaceous–Early Tertiary compression. The comparison of the North German and Polish basins shows that inversion structures can follow an earlier subsidence pattern only under a favourable orientation of the stress field. A thick Zechstein salt layer in the central parts of the North German Basin and the Mid-Polish Trough caused mechanical decoupling between the sub-salt basement and the supra-salt sedimentary cover. Resultant thin-skinned inversion was manifested by the formation of various structures developed entirely in the supra-salt Mesozoic–Cenozoic succession. The Zechstein salt provided a mechanical buffer accommodating compressional stress and responding to the inversion through salt mobilisation and redistribution. Only in parts of the NGB and MPT characterised by either thin or missing Zechstein evaporites, thick-skinned inversion directly controlled inversion-related deformations of the sedimentary cover. Inversion of the Permo-Mesozoic fill within the Mid-Polish Trough was achieved by a regional elevation above uplifted basement blocks. Conversely, in the North German Basin, horizontal stress must have been transferred into the salt cover across the basin from its SW margin towards the basins centre. This must be the case since compressional deformations are concentrated mostly above the salt and no significant inversion-related basement faults are seismically detected apart from the basin margins. This strain decoupling in the interior of the North German Basin was enhanced by the presence of the Elbe Fault System which allowed strain localization in the basin floor due to its orientation perpendicular to the inferred Late Cretaceous–Early Tertiary far-field compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bachmann G, Grosse S (1989) Struktur und Entstehung des Norddeutschen Beckens – geologische und geophysikalische Interpretation einer verbesserten Bouguer-Schwerekarte. In: Das Norddeutsche Becken – Geophysikalische und geologische Untersuchungen des tieferen Untergrundes. Niedersächsische Akademie der Geowisssenschaften Veröfftl., Hannover 2:23–47

  • Baldschuhn R, Frisch U, Kockel F (1996) Geotektonischer Atlas von NW-Deutschland 1:30000, part 1–17, Bundesanstalt für Geowissenschaften und Rohstoffe (Hannover),16 sheets

  • Bayer U, Scheck M, Rabbel W, Krawczyk CM, Goetze HJ, Stiller M, Beilecke T, Marotta AM, Barrio-Alvers L, Kuder J (1999) An integrated study of the NE German Basin. Tectonophysics 314 (1–3):285–307

    Article  Google Scholar 

  • Benek R, Kramer W, McCann T, Scheck M, Negendank JFW, Korich D, Huebscher H, Bayer U (1996) Permo-Carboniferous magmatism and related subsidence of the NE German basin. Tectonophysics 266:379–404

    Article  Google Scholar 

  • Betz D, Führer F, Plein E (1987) Evolution of the Lower Saxony Basin. Tectonophysics 137:127–170

    Article  Google Scholar 

  • Brink H-J, Franke D, Hoffmann N, Horst W, Onken O (1990) Structure and evolution of the North German Basin. In: Freeman R, Giese P, Mueller St (Eds) The European Geotraverse. Integrative studies, European Science Foundation, Strassbourg, pp 195–212

  • Dadlez R (1997) Epicontinental basins in Poland: Devonian to Cretaceous-relationship between the crystalline basement and sedimentary infill. Geol Q 41:419–432

    Google Scholar 

  • Dadlez R (2001) Mid-Polish Trough—geological cross-sections. Polish Geological Institute, Warsaw

    Google Scholar 

  • Dadlez R (2003) Mesozoic thickness pattern in the Mid-Polish Trough. Geol Q 47(3):223–240

    Google Scholar 

  • Dadlez R, Marek S (1969) Structural style of the Zechstein—Mesozoic complex in some areas of the Polish Lowland (in Polish with English summary). Kwartalnik Geologiczny 3:543–565

    Google Scholar 

  • Dadlez R, Marek S (1974) General Outline of the Tectonics of the Zechstein–Mesozoic Complex in Central and Northwester Poland. Biuletyn Instytutu Geologicznego 274:11–140

    Google Scholar 

  • Dadlez R, Jóźwiak W, Młynarski S (1997) Subsidence and inversion in the western part of Polish Basin—data from seismic velocities. Geol Q 41(2):197–208

    Google Scholar 

  • Dadlez R, Narkiewicz M, Stephenson RA, Visser MTM, Van Wees J-D (1995) Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology. Tectonophysics 252:179–195

    Article  Google Scholar 

  • Dadlez R, Marek S, Pokorski J (eds) (1998) Palaeogeographic atlas of epicontinental Permian and Mesozoic in Poland (1: 2 500 000). Polish Geological Institute, Warszawa

  • DEKORP-BASIN Research Group, Bachmann GH, Bayer U, Dürbaum HJ, Hoffmann N, Krawczyk CM, Lück E, McCann T, Meissner R, Meyer H, Oncken O, Polom U, Prochnow U, Rabbel W, Scheck M, Stiller M (1999) The deep crustal structure of the Northeast German basin: New DEKORP-BASIN’96 deep-profiling results. Geology 27:55–58

    Google Scholar 

  • Golonka J, Oszczypko N, Ślączka A (2000) Late Carboniferous–Neogene geodynamic evolution and palaeogeography of the circum-Carpathian region and adjacent areas. Annales Societatis Geologorum Poloniae 70:107–136

    Google Scholar 

  • Gutowski J, Krzywiec P, Pożaryski W (2003) From extension to inversion–sedimentary record of Mesozoic Tectonic Evolution Within the Marginal Fault Zone, SE Mid-Polish Trough. In: Proceedings of the 8th meeting of the Czech Tectonic Studies Group/1st Meeting of the Central European Tectonics Group, 24–27.04, Hruba Skala, Geolines 16:38–39

  • Hakenberg M, Świdrowska J (1998) Evolution of the Holy Cross segment of the Mid-Polish Trough during the Cretaceous. Geol Q 42(3):239–262

    Google Scholar 

  • Hakenberg M, Świdrowska J (2001) Cretaceous basin evolution in the Lublin area along the Teisseyre-Tornquist Zone (SE Poland). Annales Societatis Geologorum Poloniae 71:1–20

    Google Scholar 

  • Hoth K., Rusbült J., Zagora K., Beer H.,& Hartmann O., 1993: Die tiefen Bohrungen im Zentralabschnitt der Mitteleuropäischen Senke - Dokumentation für den Zeitabschnitt 1962–1990. Schriftenreihe für Geowissenschaften, Berlin

  • Jaritz W (1987) The origin and development of salt structures in northwest Germany. In: Lerche I, O’Brien JJ (eds) Dynamical geology of salt and related structures. Academic, Orlando, pp 480–493

  • Jaroszewski W (1972) Mesozoic structural criteria of tectonics of non-orogenic areas: an example from north-eastern Mesozoic margin of the Świętokrzyskie Mountains (in Polish with English summary). Studia Geologica Polonica 38:1–215

    Google Scholar 

  • Jaskowiak-Schoeneich M (ed) (1979) The geological structure of the Szczecin Trough and Gorzów Block. Prace Instytutu Geologicznego XCVI, 178pp

  • Kiersnowski H, Paul J, Peryt TM, Smith DB (1995) Facies, paleogeography and sedimentary history of the Southern Permian Basin in Europe. In: Scholle P, Peryt TM, Ulmer-Scholle D (eds) The Permian of Northern Pangea. Springer, Berlin Heidelberg New York, vol 1, pp 119–136

  • Knape H (1963) Tektonischer Bau und Strukturgenese im nordwestlichen Vorland des Flechtinger Höhenzuges; Teil II: Regionale Entwicklung und struktullerer Bau. Geologie 12 (6):637–673

    Google Scholar 

  • Kockel F (2003) Inversion structures in Central Europe—expressions and reasons, an open discussion. Geologie en Mijnbouw 82(4):367–382

    Google Scholar 

  • Konon A (2004) Successive episodes of normal faulting and fracturing resulting from progressive extension during the uplift of the Holy Cross Mountains, Poland. J Struct Geol 26:419–433

    Article  Google Scholar 

  • Kossow D, Krawczyk CM, McCann T, Strecker M, Negendank JFW (2000) Style and evolution of salt pillows and related structures in the northern part of the Northeast German basin. Int J Earth Sci 89:652–664

    Article  Google Scholar 

  • Kossow D, Krawczyk CM (2002) Structure and quantification of processes controlling the evolution of the inverted NE-German Basin. Mar Pet Geol 19:601–618

    Article  Google Scholar 

  • Koyi H, Jenyon MK, Petersen K (1993) The effects of basement faulting on diapirism. J Pet Geol 16 (3):285–312

    Article  Google Scholar 

  • Krzywiec P, (2000) On mechanism of the Mid-Polish Trough inversion (in Polish with extended English summary). Pol Geol Inst Bull 393:135–166

    Google Scholar 

  • Krzywiec P (2002a) Mid-Polish Trough inversion—seismic examples, main mechanisms and its relationship to the Alpine–Carpathian collision. In: Bertotti G, Schulmann K, Cloetingh S (eds), Continental collision and the tectonosedimentary evolution of Forelands. European Geosciences Union, Stephan Mueller Special Publication Series, vol 1, pp 151–165

  • Krzywiec P (2002b) Oświno structure (NW Mid-Polish Trough)—salt diapir or inversion-related compressional structure? Geol Q 46:337–346

    Google Scholar 

  • Krzywiec P (2004a) Triassic evolution of the Kłodawa salt structure: basement-controlled salt tectonics within the Mid-Polish Trough (central Poland). Geol Q 48(2):123–134

    Google Scholar 

  • Krzywiec P (2004b) Basement vs. salt tectonics and salt-sediment interaction—case study of the Mesozoic Evolution of the Intracontinental Mid-Polish Trough. In: 24th Annual GCSSEPM Foundation Bob F. Perkins Research Conference, Houston, Texas, 5–8.12.2004 (in press)

  • Krzywiec P, Kramarska R, Zientara P (2003) Strike-slip tectonics within the SW Baltic Sea and its relationship to the Mid-Polish Trough inversion—evidence from high-resolution seismic data. Tectonophysics 373:93–105

    Article  Google Scholar 

  • Krzywiec P, Wybraniec S (2003) Role of the SW Margin of the East European Craton During the Mid-Polish Trough Mesozoic development and inversion—integration of seismic and potential field data: proceedings of the 8th meeting of the Czech Tectonic Studies Group/1st Meeting of the Central European Tectonics Group, 24–27.04, Hruba Skala, Geolines—Papers in Earth Sciences, vol 16, pp 64–66

  • Kutek J, Głazek J, (1972) The Holy Cross Area, Central Poland, in the Alpine Cycle. Acta Geologica Polonica 22:603–653

    Google Scholar 

  • Lamarche J, Świdrowska J, Bergerat F, Hakenberg M, Mansy J-L, Wieczorek J, Stupnicka E, Dumont T (1998) Development and deformation of a Mesozoic basin adjacent to the Teisseyre-Tornquist Zone: The Holy Cross Mountains (Poland). In: Crasquin-Soleau S, Barrier E (eds) Peri-Tethys Memoir 4: epicratonic basins of Peri-Tethyan platforms. Mem Mus Natn Hist Nat 179:75–92

  • Lamarche J, Bergerat F, Lewandowski M, Mansy J-L, Świdrowska J, Wieczorek J (2002) Variscan to Alpine heterogeneous palaeo-stress field above a major Palaeozoic suture in the Carpathian foreland (southeastern Poland). Tectonophysics 357:55–80

    Article  Google Scholar 

  • Lamarche J, Scheck M, Lewerenz B (2003a) Heterogeneous tectonic inversion of the Mid-Polish Trough related to crustal architecture, sedimentary patterns and structural inheritance. Tectonophysics 373:75–92

    Article  Google Scholar 

  • Lamarche J, Lewandowski M, Mansy J-L, Szulczewski M (2003b) Partitioning pre-, syn- and post-Variscan deformation in the Holy Cross Mountains, eastern Variscan foreland. In: McCann T, Saintot A (eds) Tracing Tectonic Deformation Using Sedimentary Record. Geological Society Special Publication, 2008:159–184

  • Leszczyński K (2000) The Late Cretaceous sedimentation and subsidence south-west of the Kłodawa Salt Diapir, central Poland. Geol Q 44(2):167–174

    Google Scholar 

  • Leszczyński K (2002) Late Cretaceous inversion and salt tectonics in the Koszalin – Chojnice and Drawno – Człopa – Szamotuły zones, Pomeranian sector of the Mid-Polish Trough. Geol Q 46(3):347–362

    Google Scholar 

  • Lockhorst A (Editor) (1998) NW European Gas Atlas–composition and isotope ratios of natural gases. GIS application on CD by the British geological Survey, Bundesanstalt für Geowissenschaften unf Rohstoffe, Danmarks og Grønland Geologiske Undersogelse, Nederlands Instituut voor Toegepaste Geowetenschappen, Państwowy Instytut Geologiczny, European Union

  • Ludwig AO (1983) Die strukturelle Entwicklung des NW-Abschnittes des Elbe-Lineaments und Vergleich mit den anschließenden SE-Abschnitt im Gebiet der DDR. Veröff Zent Phys Erde 77:143–176

    Google Scholar 

  • Marek S (ed) (1977) Geological structure of the eastern part of the Mogilno – Łódź Trough (Gopło – Ponętów – Pabianice zone). Prace Instytutu Geologicznego, LXXX, 165pp, (in Polish with English summary)

  • Marek S, Znosko J (1972a) Tectonics of the Kujawy region (in Polish with English summary). Kwartalnik Geologiczny 16:1–18

    Google Scholar 

  • Marek S, Znosko J (1972b) History of geological development of the Kujawy region (in Polish with English summary). Kwartalnik Geologiczny 16:233–248

    Google Scholar 

  • Matte Ph (1991) Accretionary history and crustal evolution of the Variscan Belt in Western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  • Mattern F (2001) Permo-Silesian movements between Baltica and western Europe: tectonics and “basin families”. Terra Nova 13:368–375

    Article  Google Scholar 

  • Maystrenko J, Bayer U, Scheck M (2005) The Glueckstadt Graben, a sedimentary record between the North- and Baltic Seas in North Central Europe. Tectonophysics 397:113–126

    Article  Google Scholar 

  • Nalpas T, Brun JP (1993) Salt flow and diapirism related to extension at crustal scale. Tectonophysics 228:349–362

    Article  Google Scholar 

  • Nalpas T, Douaran SL, Brun J-P, Unternehr P, Richert J-P (1995) Inversion of the Broad Fourteens Basin (Netherlands offshore), a small-scale model investigation. Sediment Geol 95:237–250

    Article  Google Scholar 

  • Otto V (2003) Inversion-related features along the southeastern margin of the North German Basin (Elbe Fault System). Tectonophysics 373:107–123

    Article  Google Scholar 

  • Petmecky S, Meier L, Reiser H, Littke R (1999) High thermal maturity in the Lower Saxony Basin: intrusion or deep burial? Tectonophysics 304:317–344

    Article  Google Scholar 

  • Pożaryski W, Brochwicz-Lewiński W (1978) On the Polish Trough. Geologie en Mijnbow 57:545–557

    Google Scholar 

  • Pożaryski W (1997) The salt tectonics. In: Pożaryski W (ed) Geology of Poland, IV (Tectonics). Wydawnictwa Geologiczne, Warszawa, pp 351–356

  • Remmelts G (1995) Fault-related tectonics in the Southern North Sea, The Netherlands. In: Jackson MPA, Roberts DG, Snelson S (eds) Salt tectonics a global perspective. AAPG Memoir, vol 65, pp 261–272

  • Rühberg N (1997) Geologische Karte von Mecklenburg-Vorpommern (Zechsteinstrukturen) 1:500,000. Sternberg: GLA Mecklenburg-Vorpommern, Schwerin

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Scheck M, Bayer U, Otto V, Lamarche J, Banka D, Pharaoh T (2002) The Elbe Fault System in North Central Europe—a basement controlled zone of crustal weakness. Tectonophysics 360:281–299

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003a) Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics 373:55–73

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003b) Salt movements in the Northeast German Basin and its relation to major post-Permian tectonic phases—results from 3D structural modelling, backstripping and reflection seismic data. Tectonophysics 361:277–299

    Article  Google Scholar 

  • Scheck M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  • Schlüter H-U, Best G, Jürgens U, Binot F (1997) Interpretation reflexionseismischer Profile zwischen baltischer Kontinentplatte und kaledonischem Becken in der südlichen Ostsee – erste Ergebnisse. Zeitschrift der Deutschen Geologischen Gesellschaft 148 (1):1–32

    Google Scholar 

  • Schretzenmayr S (1993) Bruchkinematik des Haldenslebener und Gardelegener Abbruchs (Scholle von Calvörde). Geologisches Jahrbuch Reiche A 131:219–238

    Google Scholar 

  • Sokołowski J (1966) The role of halokinesis in the development of Mesozoic and Cainozoic deposits of the Mogilno structure and of the Mogilno – Łódź Synclinorium. Prace Instytutu Geologicznego, L, 112pp, (in Polish with English summary)

  • Stackenbrandt W (1986) Beiträge zur tektonischen Analyse ausgewählter Bruchzonen der Subherzynen Senke und angrenzender Gebiete (Aufrichtungszone, Flechtinger Scholle). Veröff Zent Phys Erde 79:1–81

    Google Scholar 

  • Stephenson RA, Narkiewicz M, Dadlez R, van Wees J-D, Andriessen P (2003) Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion. Sediment Geol 156:59–70

    Article  Google Scholar 

  • Stewart S (1999) Geometry of thin-skinned tectonic systems in relation to detachment layer thickness in sedimentary basins. Tectonics 18(4):719–732

    Article  Google Scholar 

  • Świdrowska J, Hakenberg M (1999) Subsidence and the problem of incipient inversion in the Mid-Polish Trough based on thickness maps and Cretaceous lithofacies analysis (in Polish with English summary). Przegląd Geologiczny 47(1):61–68

    Google Scholar 

  • Świdrowska J, Hakenberg M (2000) Paleotectonic conditions of Cretaceous basin development in the southeastern segment of the Mid-Polish Trough. In: Crasquin-Soleau S, Barrier E (eds) Peri-Tethys Memoir 5: new data on Peri-Tethyan sedimentary basins. Mem Mus Hist Nat 182:239–256

  • Van Wees J-D, Beekman F (2000) Lithosphere rheology during intraplate basin extension and inversion—inferences from automated modelling of four basins in western Europe. Tectonophysics 320:219–242

    Article  Google Scholar 

  • Vejbæk OW, Stouge S, Poulsen KD (1994) Paleozoic tectonic and sedimentary evolution and hydrocarbon prospectivity in the Bornholm area. Geological Survey of Denmark, DGU Serie A, 34, 23pp

  • Wagner R (1998) Zechstein. In: Dadlez R, Marek S, Pokorski J (Eds.), Palaeogeographic Atlas of Epicontinental Permian and Mesozoic in Poland (1: 2 500 000). Polish Geological Institute, Warszawa

  • Wagner R, Leszczyński K, Pokorski J, Gumulak K (2002) Paleotectonic cross-sections through the Mid-Polish Trough. Geol Q 46:293–306

    Google Scholar 

  • Withjack MO, Callaway S (2000) Active normal faulting beneath a salt layer: an experimental study of deformation patterns in the cover sequences. Am Assoc Pet Geol Bull 84(5):627–651

    Google Scholar 

  • Ziegler PA (eds) (1982) Geological Atlas of Western and Central Europe. Elsevier, Amsterdam

    Google Scholar 

  • Ziegler PA (Editor) (1987) Compressional intra-plate deformations in the Alpine foreland. Tectonophysics 137:1–420

    Article  Google Scholar 

  • Ziegler PA (1988) Evolution of the Arctic-North Atlantic and Western Tethys. Am Assoc Pet Geol Mem 43:1–198

    Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe, 2nd edn. Shell Internationale Petroleum Mij. BV and Geological Society of London (London):1–239

  • Ziegler PA, Cloetingh S, Van Wees J-D (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59

    Article  Google Scholar 

Download references

Acknowledgements

S. Mazur and M. Scheck-Wenderoth thank the WEG and DGMK for the permission to use and publish the seismic sections from NW Germany. They furthermore acknowledge the financial support by the German Science Foundation (DFG SPP1135, Grant Scheck674/1-1). This is publication no. GEOTECH-128 of the programme GEOTECHNOLOGIEN of BMBF and DFG. P. Krzywiec was supported by the Polish State Committee for Scientific Research (KBN) through the PGI project No 6.20.9422.00.0 (NW and central MPT) and research grant 5T12B00723 (SE Mid-Polish Trough). Polish Oil and Gas Company, Apache Polska, and Petrobaltic Petroleum Company/Ministry of Environment kindly provided seismic data from the Polish Basin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislaw Mazur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazur, S., Scheck-Wenderoth, M. & Krzywiec, P. Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins. Int J Earth Sci (Geol Rundsch) 94, 782–798 (2005). https://doi.org/10.1007/s00531-005-0016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0016-z

Keywords

Navigation