Skip to main content
Log in

Nature and significance of a Cambro-Ordovician high-K, calc-alkaline sub-volcanic suite: the late- to post-orogenic Motru Dyke Swarm (Southern Carpathians, Romania)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Motru Dyke Swarm intrudes the Precambrian Danubian basement of the Southern Carpathians (Romania). It is a marker of a sub-volcanic event that occurred during the early Palaeozoic (Cambrian to Ordovician). The geographical distribution of dykes on a ∼2,000 km2 area is heterogeneous; several areas of high dyke density have been the subject of a detailed petrological and geochemical study. Taken altogether, the 150 samples define a single complete magmatic series, from basaltic andesite to rhyolite. Whole-rock major element variations show a medium- to high-K, calc-alkaline magmatic suite. The compositional variations and the general decrease of trace element contents (both compatible and incompatible, including REEs) from basaltic andesite to rhyolite are consistent with 1) the fractionation of the observed phenocryst assemblages, Ca-amphibole (Ti-pargasite to magnesiohornblende) followed by intermediate plagioclase, clinopyroxene and accessory biotite and quartz and 2) the absence of lower and/or upper crustal contamination. Trace elements diagrams display typical arc patterns (LILE, Pb and LREE enrichment and relative depletion in Nb-Ta, Zr-Hf and Ti). The Th/U, Nb/Ta and Zr/Hf ratios are constant and close to the mantle values throughout the whole series, which argues that the parental magma was generated from a single and homogeneous enriched lithospheric mantle source. The field regional evidence implies that melting occurred during a late- to post-orogenic period of lithospheric extension, and thus took place quite lately after the cessation of Pan-African subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel-Rahman AFM (1995) Tectonic-magmatic stages of shield evolution: the Pan-African belt in northeastern Egypt. Tectonophysics 242:223–240. doi:10.1016/0040-1951(94)00171-5

    Article  Google Scholar 

  • Abdel-Rahman AFM, Doig R (1987) The Rb-Sr geochronological evolution of the Ras Gharib segment of the northern Nubian shield. J Geol Soc Lond 144:577–586

    Article  Google Scholar 

  • Aftabi A, Atapour H (2000) Regional aspects of shoshonitic volcanism in Iran. Episodes 23:119–125

    Google Scholar 

  • Akay E, Erdogan B (2004) Evolution of neogene calc-alkaline to alkaline volcanism in the Aliaga-Foça region (Western Anatolia, Turkey). J Asian Earth Sci 24(3):367–387. doi:10.1016/j.jseaes.2004.01.015

    Article  Google Scholar 

  • Berza T (1978) Studiul mineralogic şi petrografic al masivului granitoid de Tismana. An Inst Geol Geofiz LIII:5–176

    Google Scholar 

  • Berza T, Iancu V (1994) Variscan events in the basement of the danubian nappes (South Carpathians). In: Berza T (ed) Geological evolution of the Alpine-Carpathian-Pannonian system, ALCAPA II, field guidebook, Romanian J Tecton Reg Geol 75:93–104

  • Berza T, Seghedi A (1975) Complexul filonian presilurian din bazinul Motrului (Carpaţii Meridionali). D S Inst Geol Geofiz LXI/1:131–149

    Google Scholar 

  • Berza T, Seghedi A (1983) The crystalline basement of the Danubian units in the Central South Carpathians. An Inst Geol Geofiz LXI:15–22

    Google Scholar 

  • Berza T, Kräutner HG, Dimitrescu R (1983) Nappe structure of the Danubian window of the central South Carpathians. An Inst Geol Geofiz 60:31–34

    Google Scholar 

  • Berza T, Balintoni I, Iancu V, Seghedi A, Hann HP (1994) South Carpathians. In: Berza T (ed) Geological evolution of the Alpine-Carpathian-Pannonian system, ALCAPA II, field guidebook, Romanian J Tecton Reg Geol 75:37–49

  • Bologne G, Duchesne J-C (1991) Analyse des roches silicatées par spectrométrie de fluorescence X: précision et exactitude. Belg Geol Surv Prof Paper 249:1–11

    Google Scholar 

  • Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet Sci Lett 135(1–4):1–11

    Article  Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer: The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244. doi:10.1007/BF00413350

    Article  Google Scholar 

  • Devine JD, Sigurdsson H (1983) The liquid composition and crystallization history of the 1979 Soufriere magma, St Vincent, WI. J Volcanol Geotherm Res 16:1–31. doi:10.1016/0377-0273(83)90082-3

    Article  Google Scholar 

  • Duchesne J-C (Ed.) (1997) Geochemistry of Romanian granites. Final report, CIPA programme, Laboratoires associés de Géologie, Pétrologie et Géochimie, Université de Liège, p 161

  • Duchesne J-C, Berza T, Liégeois JP, Vander Auwera J (1998) Shoshonitic liquid line of descent from diorite to granite: the late Precambrian post-collisional Tismana pluton (South Carpathians, Romania). Lithos 45:281–303. doi:10.1016/S0024-4937(98)00036-X

    Article  Google Scholar 

  • Féménias O (2003) Contribution à l’étude du magmatisme tardi- à post-orogénique. De sa source à sa mise en place en sub-surface : exemples régionaux de l’essaim de filons du Motru (Roumanie) et du complexe lité profond sous Beaunit (France), PhD dissertation, Université Libre de Bruxelles. p 450

  • Féménias O, Coussaert N, Bingen B, Whitehouse M, Mercier J-CC, Demaiffe D (2003) A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic-ultramafic layered xenoliths from Beaunit (French Massif Central). Chem Geol 199:293–315. doi:10.1016/S0009-2541(03)00124-4

    Article  Google Scholar 

  • Féménias O, Diot H, Berza T, Gauffriau A, Demaiffe D (2004) Asymmetrical to symmetrical magnetic fabric of dikes: paleo-flow orientations and paleo-stresses recorded on feeder-bodies from the Motru Dike Swarm (Romania). J Struct Geol 26:1401–1418. doi:10.1016/j.jsg.2003.12.003

    Article  Google Scholar 

  • Féménias O, Mercier J-CC, Nkono C, Diot H, Berza T, Tatu M, Demaiffe D (2006) Calcic amphibole growth and compositions in calc-alkaline magmas: Evidence from the Motru Dyke Swarm (Southern Carpathians, Romania). Am Min 91:73–81. doi:10.2138/am.2006.1869

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Heidelberg, p 390

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differenciation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Hanson GN (1980) Rare earth elements in petrogenesis studies of igneous systems. Ann Rev Earth Planet Sci 8:371–406

    Article  Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes (28 to 35°S). In: Harmon RS, Rapela CW (eds) Andean Magmatism and its Tectonic Setting. Geol Soc Am Spec Pap 265:113–137

  • Kräutner HG, Năstăseanu S, Berza T, Stănoiu I, Iancu V (1981) Metamorphosed Paleozoic in the South Carpathians and its relation with the pre-Palaeozoic basement, Guide to excursion A, Carpath Balkan Assoc Congr XII, Bucuresti, p 116

  • Kräutner H, Berza T, Dimitrescu R (1988) South Carpathians. In: Zoubek V (ed) Precambrian in younger fold belts. Willey, London, pp 633–664

    Google Scholar 

  • Kuno H (1968) Differentiation of basalt magmas. In: Hess HH, Poldervaart A (Eds) Basalts: the Poldervaart Treatise on rocks of basaltic composition, 2, Interscience, New York, pp 623–688

  • Le Bas M.J, Le Maître RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Le Maitre RW (ed) (2002) Igneous rocks. A classification and glossary of terms, 2nd edn. IUGS-Cambridge University Press, p 236

  • Liégeois JP, Berza T, Tatu M, Duchesne JC (1996) The neoproterozoic Pan-African basement from the Alpine Lower Danubian nappe system (South Carpathians, Romania). Precambrian Res 80:281–301. doi:10.1016/S0301-9268(96)00019-8

    Article  Google Scholar 

  • Manolescu G (1937) Etude géologique et pétrographique dans les Munţii Vulcan (Carpates Méridionales, Roumanie). An Inst Geol Rom XVIII:79–172

    Google Scholar 

  • Mattauer M (2004) Orthogneisses in the deepest levels of the Variscan belt are not a Precambrian basement but Ordovician granites: tectonic consequences, CR. Geosciences 336(6):487–489. doi:10.1016/j.crte.2004.03.001

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Miller C, Schuster R, Klötzli U, Frank W, Purtscheller F (1999) Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Article  Google Scholar 

  • Moghazi AM (2003) Geochemistry and petrogenesis of a high-K calc-alkaline Dokhan Volcanic suite, South Safaga area, Egypt: the role of the late Neoproterozoic crustal extension. Precambrian Res 125:161–178. doi:10.1016/S0301-9268(03)00110-4

    Article  Google Scholar 

  • Mohamed FH, Moghazi AM, Hassanen MA (2000) Geochemistry, petrogenesis and tectonic setting of late Neoproterozoic Dokhan-type volcanic rocks in the Fatira area, eastern Egypt. Int J Earth Sci 88:764–777

    Article  Google Scholar 

  • Nkono C, Féménias O, Diot H, Berza T, Demaiffe D (2006) Flowage differentiation in an andesitic dyke of the Motru swarm (S. Carpatian, Romania): evidence from AMS, CSD and geochemical investigations. J Volcan Geotherm Res 154:201–221. doi:10.1016/j.jvolgeores.2006.02.011

    Article  Google Scholar 

  • Nomade S, Renne PR, Mo X, Zhao Z, Zhou S (2004) Miocene volcanism in the Lhasa block, Tibet: spatial trends and geodynamic implications. Earth Planet Sci Lett 221(1–4):227–243. doi:10.1016/S0012-821X(04)00072-X

    Article  Google Scholar 

  • Pavelescu L (1953) Studiul geologic şi petrographic al regiunii centrale şi de Sud-Est a Munţilor Retezatului. An Com Geol XXV:119

    Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, Chichester, pp 525–548

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Peccerillo A (1985) Roman comagmatic province (central Italy): evidence for subduction-related magma genesis. Geology 13:103–106

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collisional orogens, Tectonophysics 365(1–4):7–22. doi:10.1016/S0040-1951(03)00015-5

    Google Scholar 

  • Richards JP, Villeneuve M (2002) Characteristics of late Cenozoic volcanism along the Archibarca lineament from Cerro Llullaillaco to Corrida de Cori, northwest Argentina. J Volcanol Geotherm Res 116:161–200. doi:10.1016/S0377-0273(01)00329-8

    Article  Google Scholar 

  • Rickwood PC (1989) Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22:247–263. doi:10.1016/0024-4937(89)90028-5

    Article  Google Scholar 

  • Rock NMS (1984) Nature and origin of calc-alkaline lamprophyres: minettes, vogesites, kersantites, and spessartites. Trans R Soc Edinburgh 74:193–227

    Google Scholar 

  • Rogers NW, Hawkesworth CJ’ Parker RJ, Marsh JS (1985) The geochemistry of potassic lavas from Vulsini, central Italy, and implications for mantle enrichment processes beneath the Roman region. Contrib Mineral Petrol 90:211–257

    Article  Google Scholar 

  • Rogers NW, Hawkesworth CJ, Mattey DP, Harmon RS (1987) Sediment subduction and the source of potassium in orogenic leucitites. Geology 15:451–453

    Article  Google Scholar 

  • Rottura A, Bargossi GM, Caggianelli A, Del Moro A, Visona D, Tranne CA (1998) Origin and significance of the Permian high-K calc-alkaline magmatism in the central-eastern Southern Alps, Italy. Lithos 45:329–348. doi:10.1016/S0024-4937(98)00038-3

    Article  Google Scholar 

  • Rutherford MJ, Devine JD (1988) The May 18, 1980 eruption of Mont St. Helens 3. Stability and chemistry of amphibole in magma chamber. J Geophys Res 93:11949–11959

    Article  Google Scholar 

  • Savu H (1970) Structura plutonului granitoid de Şuşiţa si relaţiile sale cu formaţiunile autohtonului danubian (Carpaţii Meridionali). D S Inst Geol LVI/5:123–153

    Google Scholar 

  • Sisson TW (1994) Hornblende-melt trace-element partitioning measured by ion microprobe. Chem Geol 117:331–344. doi:10.1016/0009-2541(94)90135-X

    Article  Google Scholar 

  • Sloman LE (1989) Triassic shoshonites from the Dolomites, northern Italy, alkaline arc rocks in a strike-slip setting. J Geophys Res 94:4655–4666

    Article  Google Scholar 

  • Snetsinger KG (1969) Manganoan ilmenite from a sierran adamellite. Am Min 54:431–436

    Google Scholar 

  • Stănoiu I (1973) Zona Mehedinţi – Retezat: o unitate paleogeografică şi tectonicş distinctă a Carpaţilor Meridionali. D S Inst Geol LIX/5:127

    Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth Planet Sci Lett 196(1–2):17–33. doi:10.1016/S0012-821X(01)00588-X

    Article  Google Scholar 

  • Thirwall MF (1988) Wenlock to mid-Devonien volcanism of the Caledonian-Applachian Orogen. Geol Soc Lond Spec Publ 38:415–428

    Google Scholar 

  • Turner SP, Platt JP, George RMM, Kelly SP, Pearson DG, Norwell GM (1999) Magmatism associated with orogenic collapse of the Betic-Alboran Domain, S.E. Spain. J Petrol 40:1011–1036

    Article  Google Scholar 

  • Vander Auwera J, Bologne G, Roelandts I, Duchesne J-C (1998) Inductively coupled plasma-mass spectrometric (ICP-MS) analysis of silicate rocks and minerals. Geol Belg 1:49–53

    Google Scholar 

  • Wang K-L, Chung S-L, Chen C-H, Shinjo R, Yang TF, Chen C-H (1999) Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough. Tectonophysics 308:363–376. doi:10.1016/S0040-1951(99)00111-0

    Article  Google Scholar 

  • Wilson M (1989) Igneous Petrogenesis. Unwin Hyman, London, p 457

    Google Scholar 

  • Winter JD (2001) An introduction to Igneous and Metamorphic Petrology. Prentice-Hall, Upper Saddle River, p 697

    Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory and application. Am Min 50:1228–1272

    Google Scholar 

  • Zellmer G, Hawkesworth CJ, Sparks RSJ, Thomas LE, Harford CL, Brewer TS, Loughlin SC (2003) Geochemical evolution of the Soufriere Hills Volcano, Montserrat, Lesser Antilles Volcanic Arc. J Petrol 44:1349–1374

    Article  Google Scholar 

  • Zhou J (1985) The timing of calc-alkaline magmatism in parts of the Alpine–Himalayan collision zone and its relevance to the interpretation of Caledonian magmatism. J Geol Soc 142:309–317

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the thorough and constructive comments of Dr. Montero and of an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Féménias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Féménias, O., Berza, T., Tatu, M. et al. Nature and significance of a Cambro-Ordovician high-K, calc-alkaline sub-volcanic suite: the late- to post-orogenic Motru Dyke Swarm (Southern Carpathians, Romania). Int J Earth Sci (Geol Rundsch) 97, 479–496 (2008). https://doi.org/10.1007/s00531-007-0178-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-007-0178-y

Keywords

Navigation