International Journal of Earth Sciences

, Volume 96, Issue 5, pp 947–955 | Cite as

From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland

  • M. Widera
  • G. Jachna-Filipczuk
  • R. Kozula
  • S. Mazurek
Original Paper


Only one quantitative method is described in the literature to estimate the consolidation coefficient of lignite seams. More studies concentrate on the compaction of plant tissues, which explains why the obtained results are overestimated. Moreover, most studies do commonly not determine the consolidation of the whole peat bog but usually those of some of its elements only. We propose a new approach, which conceptually is fairly close to the Hager et al. (Fortschr Geol Rheinld Westf 29:319–352, 1981) method. Our method has been tested on an example of the first Middle-Polish Lignite Seam and the second Lusatian Lignite Seam from some Wielkopolska lignite deposits in central Poland. The consolidation coefficients, C c, range between 2.34 and 2.56 for the second Lusatian Lignite Seam and between 1.80 and 2.14 for the first Middle-Polish Lignite Seam.


Wielkopolska region (Poland) Miocene Lignite seam Peat bog Consolidation coefficient 



Lignite Mine ADAMÓW JSC (KWB Konin S.A.) and Lignite Mine ADAMÓW JSC (KWB Adamów S.A.) are kindly appreciated for the borehole data and for permission to field study in the lignite open-casts. Marcin Piwocki (Warsaw, Poland) was thanked for generously providing Hager et al.’s (1981) paper. Our sincere thanks are due to Tom van Loon (Doorwerth, The Netherlands) for improving the English of the manuscript and for his valuable suggestions. We extend our gratitude to Tomasz Zieliński (Poznań, Poland) for reading the first version of this paper as well as for discussion and remarks. The authors are grateful to Noël Vandenberghe (Leuven, Belgium) and Andreas Schäfer (Bonn, Germany) for their helpful comments. The investigation was financially supported by Institute of Geology, Adam Mickiewicz University in Poznań, Poland.


  1. Ahrens H, Lotsch D (1963) Tektonische Bewegungen im Tertiär der zentralen Niederlausitz. Geologie 12(7):833–841Google Scholar
  2. Bloom AL (1964) Peat accumulation and compaction in a Connecticut coastal marsh. J Sediment Petrol 34:599–603Google Scholar
  3. Baldwin B, Butler CO (1985) Compaction curves. Am Assoc Pet Geol Bull 69(4):622–626Google Scholar
  4. Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystem of the World. Mires: swamp, bog, fen and moor general studies, vol 4A. Elsevier, New York, pp 159–224Google Scholar
  5. Courel L (1987) Stages in compaction of peat; examples from the Stephanian and Permian of the Massif Central, France. Geol Soc Lond J 144:489–493Google Scholar
  6. Daniels CH, von Cicha I, Spiegler D (1985) Correlation of Neogene regional stages between the boreal Tertiary of NW Germany and the Paratethys using Uvigerina (forams). In: VIII Congress RCMNS, symposium European late cenozoic mineral resources, Budapest, pp 131–169Google Scholar
  7. England WA, Macenzie AS (1989) Some aspects of organic geochemistry of petroleum fluids. Geol Rundsch 78:291–303CrossRefGoogle Scholar
  8. Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27(2):83–100Google Scholar
  9. Guo J, Tiu C, Uhlherr PHT (2003) Modelling of hydrothermal–mechanical expression of brown coal. Can J Chem Eng 81(1):94–102CrossRefGoogle Scholar
  10. Hager H, Kothen H, Spann R (1981) Zur Setzung der Rheinischen Braunkohle und ihrer klastischen Begleitschichten. Fortschr Geol Rheinld Westf 29:319–352Google Scholar
  11. Herbert Ch (1997) Relative sea level control of deposition in the late permian newcastle coal measures of Sydney Basin, Australia. Sediment Geol 107:167–187CrossRefGoogle Scholar
  12. Kasiński JR (1984) Synsedimentary tectonics as the factor determining sedimentation of brown coal formation in tectonic depressions in western Poland (in Polish with English abstract). Przegl Geol 32(5):260–268Google Scholar
  13. Kojima S, Sweda T, LePage BA, Basinger JF (1998) A new method to estimate accumulation rates of lignites in the Eocene Buchanan Lake formation, Canadian Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 106:115–122CrossRefGoogle Scholar
  14. Long AJ, Waller MP, Stupples P (2006) Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar Geol 225:63–122CrossRefGoogle Scholar
  15. Lotsch D, Krutzsch W, Mai D, Kiesel Y, Lazar E (1969) Stratigraphisches Korrelationsschema für das Tertiär der Deutschen Demokratischen Republik. Abh Zentr Geol Inst, Berlin, 12(I-XIV):1–438Google Scholar
  16. Michon L, van Balen RT, Merle O, Pagnier H (2003) The Cenozoic evolution of the Roer Valley rift system integrated at European scale. Tectonophysics 367:101–126CrossRefGoogle Scholar
  17. Nadon GC (1998) Magnitude and timing of peat-to-coal compaction. Geology 26(8):727–730CrossRefGoogle Scholar
  18. Nurkowski J (1984) Coal quality, coal rank variation and its relation to reconstructed overburden, Upper Cretaceous and Tertiary plains coal, Alberta, Canada. Am Assoc Pet Geol Bull 68(3):285–295Google Scholar
  19. Piwocki M (1975) Trzeciorzęd okolic Rawicza i jego węglonośność. Z badań złóż węgli brunatnych w Polsce (in Polish). Pol Geol Inst Bull 284:73–132Google Scholar
  20. Piwocki M, Ziembińska-Tworzydło M (1997) Neogene of the Polish Lowlands—lithostratigraphy and pollen-spore zones. Geol Q 41(1):21–40Google Scholar
  21. Price JS, Cagampan J, Kellner E (2005) Assessment of peat compressibility: is there an easy way? Hydrol Process 19:3469–3475CrossRefGoogle Scholar
  22. Ryer TA, Langer AW (1980) Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah. J Sediment Petrol 50:987–992Google Scholar
  23. Schäfer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The Cenozoic Lower Rhine Basin—rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639CrossRefGoogle Scholar
  24. Schipper LA, McLeod M (2002) Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zeland. Soil Use Manage 18(2):91–93CrossRefGoogle Scholar
  25. Sheldon ND, Retallack GJ (2001) Equation for compaction of paleosols due to burial. Geology 29(3):247–250CrossRefGoogle Scholar
  26. Standke G, Rascher J, Strauss C (1993) Relative sea-level fluctuations and brown coal formations around the Early–Middle Miocene boundary in the Lusatian Brown Coal District. Geol Rundsch 82:295–305CrossRefGoogle Scholar
  27. Steininger F, Rögl F, (1983) Stratigraphic correlation of the Tethys–Paratethys Neogene. In: Project 25 IGCP, Paris, pp 65–66Google Scholar
  28. Steininger F, Rögl F, Dermitznkis M (1987) Report of the round table disscusion “Mediterrean and Paratethys correlation”. Ann Inst Geol Hung 70:397–421Google Scholar
  29. Teichmüller M (1982) Rank determination on sedimentary rocks and other coal. In: Stach E, Mackowsky MT, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Textbook of coal petrology, 3rd edn. Borntraeger, Stuttgart, pp 363–371Google Scholar
  30. ten Veen JH, Kleinspehn KL (2000) Quantifying the timing and sense of fault dip slip: new application of biostratigraphy and geohistory analysis. Geology 28(5):471–474CrossRefGoogle Scholar
  31. Tibert NE, Gibling MR (1999) Peat accumulation on a drowned coastal braidplain: the Mullins Coal (Upper Carboniferous), Sydney Basin, Nova Scotia. Sediment Geol 128:23–38CrossRefGoogle Scholar
  32. Van Hinte JE (1978) Geohistory analysis—application of micropaleontology in exploration geology. Am Assoc Pet Geol 62:210–222Google Scholar
  33. Vinken R (ed) (1988) The Northwest European tertiary basin, results of the IGCP. Project No. 124. Geologisches Jahrbuch Reihe A, Hannover, pp 1–512Google Scholar
  34. Widera M (2002) An attempt to determine consolidation coefficient of peat for lignite seams (in Polish with English abstract). Przegl Geol 50(1):42–48Google Scholar
  35. Widera M (2004) Phases of Paleogene and Neogene tectonic evolution of selected grabens in the Wielkopolska area, central-western Poland. Ann Soc Geol Pol 74(3):295–310Google Scholar
  36. Widera M, Banaszak J, Cepińska S, Derdowski R (2004) Paleotectonic analysis of the Paleogene and Neogene activity of the northern parts of the Poznań-Oleśnica Dislocation Zone (in Polish with English abstract). Przegl Geol 52(8/1):665–674Google Scholar
  37. Wiesner MG, Wong HK, Degens ET (1989) Provenance and diagenesis of organic matter in Late Cretaceous and Tertiary sediments from the southern Black Sea margin. Geol Rundsch 78(3):793–806CrossRefGoogle Scholar
  38. Winston RB (1986) Characteristic features and compaction of plant tissues traced from permineralized peat to coal in Pensylvanian coals (Desmoinesian) from the Illinois Basin. Int J Coal Geol 6:21–41CrossRefGoogle Scholar
  39. Zagwijn WH, Hager H (1987) Correlation of continental and marine Neogene deposits in the South-Eastern Netherlands and the Lower Rhine district. Meded Werkgr Tert Kwart Geol 24:59–78Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. Widera
    • 1
  • G. Jachna-Filipczuk
    • 2
  • R. Kozula
    • 3
  • S. Mazurek
    • 4
  1. 1.Institute of GeologyA. Mickiewicz UniversityPoznańPoland
  2. 2.Lignite Mine ADAMÓW JSCTurekPoland
  3. 3.Geological Enterprise PROXIMA JSCWrocławPoland
  4. 4.Lignite Mine KONIN JSCKleczewPoland

Personalised recommendations