Skip to main content
Log in

From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Only one quantitative method is described in the literature to estimate the consolidation coefficient of lignite seams. More studies concentrate on the compaction of plant tissues, which explains why the obtained results are overestimated. Moreover, most studies do commonly not determine the consolidation of the whole peat bog but usually those of some of its elements only. We propose a new approach, which conceptually is fairly close to the Hager et al. (Fortschr Geol Rheinld Westf 29:319–352, 1981) method. Our method has been tested on an example of the first Middle-Polish Lignite Seam and the second Lusatian Lignite Seam from some Wielkopolska lignite deposits in central Poland. The consolidation coefficients, C c, range between 2.34 and 2.56 for the second Lusatian Lignite Seam and between 1.80 and 2.14 for the first Middle-Polish Lignite Seam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahrens H, Lotsch D (1963) Tektonische Bewegungen im Tertiär der zentralen Niederlausitz. Geologie 12(7):833–841

    Google Scholar 

  • Bloom AL (1964) Peat accumulation and compaction in a Connecticut coastal marsh. J Sediment Petrol 34:599–603

    Google Scholar 

  • Baldwin B, Butler CO (1985) Compaction curves. Am Assoc Pet Geol Bull 69(4):622–626

    Google Scholar 

  • Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystem of the World. Mires: swamp, bog, fen and moor general studies, vol 4A. Elsevier, New York, pp 159–224

  • Courel L (1987) Stages in compaction of peat; examples from the Stephanian and Permian of the Massif Central, France. Geol Soc Lond J 144:489–493

    Google Scholar 

  • Daniels CH, von Cicha I, Spiegler D (1985) Correlation of Neogene regional stages between the boreal Tertiary of NW Germany and the Paratethys using Uvigerina (forams). In: VIII Congress RCMNS, symposium European late cenozoic mineral resources, Budapest, pp 131–169

  • England WA, Macenzie AS (1989) Some aspects of organic geochemistry of petroleum fluids. Geol Rundsch 78:291–303

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale, with special reference to Precambrian and Neogene. Episodes 27(2):83–100

    Google Scholar 

  • Guo J, Tiu C, Uhlherr PHT (2003) Modelling of hydrothermal–mechanical expression of brown coal. Can J Chem Eng 81(1):94–102

    Article  Google Scholar 

  • Hager H, Kothen H, Spann R (1981) Zur Setzung der Rheinischen Braunkohle und ihrer klastischen Begleitschichten. Fortschr Geol Rheinld Westf 29:319–352

    Google Scholar 

  • Herbert Ch (1997) Relative sea level control of deposition in the late permian newcastle coal measures of Sydney Basin, Australia. Sediment Geol 107:167–187

    Article  Google Scholar 

  • Kasiński JR (1984) Synsedimentary tectonics as the factor determining sedimentation of brown coal formation in tectonic depressions in western Poland (in Polish with English abstract). Przegl Geol 32(5):260–268

    Google Scholar 

  • Kojima S, Sweda T, LePage BA, Basinger JF (1998) A new method to estimate accumulation rates of lignites in the Eocene Buchanan Lake formation, Canadian Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 106:115–122

    Article  Google Scholar 

  • Long AJ, Waller MP, Stupples P (2006) Driving mechanisms of coastal change: peat compaction and the destruction of late Holocene coastal wetlands. Mar Geol 225:63–122

    Article  Google Scholar 

  • Lotsch D, Krutzsch W, Mai D, Kiesel Y, Lazar E (1969) Stratigraphisches Korrelationsschema für das Tertiär der Deutschen Demokratischen Republik. Abh Zentr Geol Inst, Berlin, 12(I-XIV):1–438

  • Michon L, van Balen RT, Merle O, Pagnier H (2003) The Cenozoic evolution of the Roer Valley rift system integrated at European scale. Tectonophysics 367:101–126

    Article  Google Scholar 

  • Nadon GC (1998) Magnitude and timing of peat-to-coal compaction. Geology 26(8):727–730

    Article  Google Scholar 

  • Nurkowski J (1984) Coal quality, coal rank variation and its relation to reconstructed overburden, Upper Cretaceous and Tertiary plains coal, Alberta, Canada. Am Assoc Pet Geol Bull 68(3):285–295

    Google Scholar 

  • Piwocki M (1975) Trzeciorzęd okolic Rawicza i jego węglonośność. Z badań złóż węgli brunatnych w Polsce (in Polish). Pol Geol Inst Bull 284:73–132

    Google Scholar 

  • Piwocki M, Ziembińska-Tworzydło M (1997) Neogene of the Polish Lowlands—lithostratigraphy and pollen-spore zones. Geol Q 41(1):21–40

    Google Scholar 

  • Price JS, Cagampan J, Kellner E (2005) Assessment of peat compressibility: is there an easy way? Hydrol Process 19:3469–3475

    Article  Google Scholar 

  • Ryer TA, Langer AW (1980) Thickness change involved in the peat-to-coal transformation for a bituminous coal of Cretaceous age in central Utah. J Sediment Petrol 50:987–992

    Google Scholar 

  • Schäfer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The Cenozoic Lower Rhine Basin—rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639

    Article  Google Scholar 

  • Schipper LA, McLeod M (2002) Subsidence rates and carbon loss in peat soils following conversion to pasture in the Waikato Region, New Zeland. Soil Use Manage 18(2):91–93

    Article  Google Scholar 

  • Sheldon ND, Retallack GJ (2001) Equation for compaction of paleosols due to burial. Geology 29(3):247–250

    Article  Google Scholar 

  • Standke G, Rascher J, Strauss C (1993) Relative sea-level fluctuations and brown coal formations around the Early–Middle Miocene boundary in the Lusatian Brown Coal District. Geol Rundsch 82:295–305

    Article  Google Scholar 

  • Steininger F, Rögl F, (1983) Stratigraphic correlation of the Tethys–Paratethys Neogene. In: Project 25 IGCP, Paris, pp 65–66

  • Steininger F, Rögl F, Dermitznkis M (1987) Report of the round table disscusion “Mediterrean and Paratethys correlation”. Ann Inst Geol Hung 70:397–421

    Google Scholar 

  • Teichmüller M (1982) Rank determination on sedimentary rocks and other coal. In: Stach E, Mackowsky MT, Teichmüller M, Taylor GH, Chandra D, Teichmüller R (eds) Textbook of coal petrology, 3rd edn. Borntraeger, Stuttgart, pp 363–371

    Google Scholar 

  • ten Veen JH, Kleinspehn KL (2000) Quantifying the timing and sense of fault dip slip: new application of biostratigraphy and geohistory analysis. Geology 28(5):471–474

    Article  Google Scholar 

  • Tibert NE, Gibling MR (1999) Peat accumulation on a drowned coastal braidplain: the Mullins Coal (Upper Carboniferous), Sydney Basin, Nova Scotia. Sediment Geol 128:23–38

    Article  Google Scholar 

  • Van Hinte JE (1978) Geohistory analysis—application of micropaleontology in exploration geology. Am Assoc Pet Geol 62:210–222

    Google Scholar 

  • Vinken R (ed) (1988) The Northwest European tertiary basin, results of the IGCP. Project No. 124. Geologisches Jahrbuch Reihe A, Hannover, pp 1–512

  • Widera M (2002) An attempt to determine consolidation coefficient of peat for lignite seams (in Polish with English abstract). Przegl Geol 50(1):42–48

    Google Scholar 

  • Widera M (2004) Phases of Paleogene and Neogene tectonic evolution of selected grabens in the Wielkopolska area, central-western Poland. Ann Soc Geol Pol 74(3):295–310

    Google Scholar 

  • Widera M, Banaszak J, Cepińska S, Derdowski R (2004) Paleotectonic analysis of the Paleogene and Neogene activity of the northern parts of the Poznań-Oleśnica Dislocation Zone (in Polish with English abstract). Przegl Geol 52(8/1):665–674

    Google Scholar 

  • Wiesner MG, Wong HK, Degens ET (1989) Provenance and diagenesis of organic matter in Late Cretaceous and Tertiary sediments from the southern Black Sea margin. Geol Rundsch 78(3):793–806

    Article  Google Scholar 

  • Winston RB (1986) Characteristic features and compaction of plant tissues traced from permineralized peat to coal in Pensylvanian coals (Desmoinesian) from the Illinois Basin. Int J Coal Geol 6:21–41

    Article  Google Scholar 

  • Zagwijn WH, Hager H (1987) Correlation of continental and marine Neogene deposits in the South-Eastern Netherlands and the Lower Rhine district. Meded Werkgr Tert Kwart Geol 24:59–78

    Google Scholar 

Download references

Acknowledgments

Lignite Mine ADAMÓW JSC (KWB Konin S.A.) and Lignite Mine ADAMÓW JSC (KWB Adamów S.A.) are kindly appreciated for the borehole data and for permission to field study in the lignite open-casts. Marcin Piwocki (Warsaw, Poland) was thanked for generously providing Hager et al.’s (1981) paper. Our sincere thanks are due to Tom van Loon (Doorwerth, The Netherlands) for improving the English of the manuscript and for his valuable suggestions. We extend our gratitude to Tomasz Zieliński (Poznań, Poland) for reading the first version of this paper as well as for discussion and remarks. The authors are grateful to Noël Vandenberghe (Leuven, Belgium) and Andreas Schäfer (Bonn, Germany) for their helpful comments. The investigation was financially supported by Institute of Geology, Adam Mickiewicz University in Poznań, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Widera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Widera, M., Jachna-Filipczuk, G., Kozula, R. et al. From peat bog to lignite seam: a new method to calculate the consolidation coefficient of lignite seams, Wielkopolska region in central Poland. Int J Earth Sci (Geol Rundsch) 96, 947–955 (2007). https://doi.org/10.1007/s00531-006-0137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0137-z

Keywords

Navigation