Skip to main content
Log in

Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone

  • ORIGINAL PAPER
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The interplay between the emplacement of crustal blocks (e.g. “ALCAPA”, “Tisza”, “Dacia”) and subduction retreat is a key issue for understanding the Miocene tectonic history of the Carpathians. Coeval thrusting and basin formation is linked by transfer zones, such as the Mid-Hungarian fault zone, which seperates ALCAPA from Tisza-Dacia. The presented study provides new kinematic data from this transfer zone. Early Burdigalian (20.5 to ∼18.5 Ma) SE-directed thrusting of the easternmost tip of ALCAPA (Pienides), over Tisza-Dacia is linked to movements along the Mid-Hungarian fault zone and the Periadriatic line, accommodating the lateral extrusion of ALCAPA. Minor Late Burdigalian (∼18.5 to 16 Ma) NE-SW extension is interpreted as related to back-arc extension. Post Burdigalian (post-16 Ma) NE–SW shortening and NW–SE extension correlate with “soft collision” of Tisza-Dacia with the European foreland coupled with southward migration of active subduction. During this stage the Bogdan-Voda and Dragos-Voda faults were kinematically linked to the Mid-Hungarian fault zone. Sinistral transpression (16 to 12 Ma) at the Bogdan-Voda fault was followed by sinistral transtension (12–10 Ma) along the coupled Bogdan-Dragos-Voda fault system. During the transtensional stage left-lateral offset was reduced eastwards by SW trending normal faults, the fault system finally terminating in an extensional horse-tail splay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angelier J, Mechler P (1977) Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et enséismologie: la methode des diédres droits. Bull Soc Géol France VII(19):1309–1318

    Google Scholar 

  • Antonescu F, Mitrea G, Popescu A (1981) Contributii la cunoasterea stratigafiei si tectonicii miocenului din regiunea Vadu Izei-Birsan-Botiza (Maramures). D.S. Inst Geol Geofiz LXVI:5–23

    Google Scholar 

  • Aroldi C (2001) The Pienides in Maramures-Sedimentation, tectonics and paleogeography. PhD Thesis, Cluj, pp 1–156

  • Balintoni I (1995) Alpine structural outline of the Pannonian Carpathian realm. Studia Universitates Babes–Bolyai, Geologia XL(2):3–16

    Google Scholar 

  • Balla Z (1982) Development of the Pannonian Basin basement through the Cretaceous–Cenozoic collision: a new synthesis. Tectonophysics 88:61–102

    Article  Google Scholar 

  • Balla Z (1987) Tertiary paleomagnetic data for the Carpatho–Pannonian region in the light of Miocene rotation kinematics. Tectonophysics 139:67–98

    Article  Google Scholar 

  • Bingham C (1964) Distributions on a sphere and the projective plane. PhD. diss. Yale University, New Haven, pp 1–93

  • Burchfiel BC (1980) Eastern European Alpine system and the Carpathian orocline as an example of collision tectonics. Tectonophysics 63:31–61

    Article  Google Scholar 

  • Ciulavu D (1999) Tertiary tectonics of the Transylvanian Basin. PhD diss Vrije Universiteit Amsterdam, Amsterdam, pp 1–154

  • Cloetingh S, Bada G, Maţenco L, Lankreijer A, Horváth F, Dinu C (2005) Thermo-mechanical modelling of the Pannonian–Carpathian system: modes of tectonic deformation, lithospheric strength and vertical motions. Geol Soc London Spec Publ., (in press)

  • Csontos L, Nagymarosy A (1998) The Mid-Hungarian line: a zone of repeated tectonic inversions. Tectonophysics 297:51–71

    Article  Google Scholar 

  • Csontos L, Vörös A (2004) Mesozoic plate tectonic reconstruction of the Carpathian region. Paleogeography, Paleoclimatology, Paleoecology 210:1–56

    Article  Google Scholar 

  • Csontos L, Nagymarosy A, Horváth F, Kováč M (1992) Cenozoic evolution of the Intra-Carpathian area: a model. Tectonophysics 208:221–241

    Article  Google Scholar 

  • Dicea O, Duţescu P, Antonescu F, Mitrea G, Botez R, Donos I, Lungu V, Moroşanu I (1980) Contributii la cunoasterea stratigrafiei zonei transcarpatice din maramures. D. S. Inst Geol Geofiz LXV, 4:21– 85

    Google Scholar 

  • Dimitrijevic MD (2001) Dinarides and the Vardar Zone: a short review of the geology. Acta Vulcanologica 13:1–8

    Google Scholar 

  • Dunkl I (2002) Trackkey: a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28:3–12

    Article  Google Scholar 

  • Fodor L, Jelen B, Márton M, Skaberne D, Car J, Vrabec M (1998) Miocene-Pliocene tectonic evolution of the Slovenian Periadriatic fault: implications for Alpine–Carpathian extrusion models. Tectonics 17:690–709

    Article  Google Scholar 

  • Fodor L, Csontos L, Bada G, Györfi I, Benkovics L (1999) Cenozoic tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of paleostress data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds). The Mediterranean basins: Cenozoic Extension within the Alpine Orogen. Geol Soc Spec Publ 156:295–334

  • Fügenschuh B, Schmid SM (2005) Age and significance of core complex formation in a highly bent orogen: evidence from fission track studies in the South Carpathians (Romania). Tectonophysics (in press)

  • Galbraith RF (1981) On statistical models for fission track counts. Math Geol 13:471–488

    Article  Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas 21:450–470

    Google Scholar 

  • Gallagher K, Brown R, Johnson C. (1998) Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci 26:519–571

    Article  Google Scholar 

  • Gleadow AJW (1981) Fission track dating methods: what are the real alternatives? Nucl Tracks 5:3–14

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5(1/2):169–174

    Article  Google Scholar 

  • Gradstein F, Ogg J, Smith A (2004) A geologic time scale. Cambridge University Press, Cambridge, pp 1–589

    Google Scholar 

  • Gröger HR (2006) Thermal and structural evolution of the East Carpathians in northern Romania: from Cretaceous orogeny to final exhumation during Miocene collision. Ph.D. thesis, Basel University, Basel, pp 1--111

  • Györfi I, Csontos L, Nagymarosy A (1999) Early Cenozoic structural evolution of the border zone between the Pannonian and Transylvanian basins. In: Durand B, Jolivet L, Horváth F, Séranne M (eds). The Mediterranean Basins: Cenozoic Extension within the Alpine Orogen. Geol Soc Spec Publ 156:251–267

  • Haas J, Pero S (2004) Mesozoic evolution of the Tisza Mega-unit. Int J Earth Sci 93:297–313

    Article  Google Scholar 

  • Haas J, Mioč P, Pamić J, Tomljenović B, Árkai P, Bérczi-Makk A, Koroknai B, Kovács S, Rálisch-Felgenhauer E (2000) Complex structural pattern of the Alpine-Dinaridic-Pannonian triple junction. Int J Earth Sci 89:377–389

    Article  Google Scholar 

  • Horváth F, Bada G, Szafián P, Tari G, Ádám A, Cloetingh S (2005) Formation and deformation of the Pannonian basin: constraints from observational data. Geol Soc London Spec Publ (in press)

  • Huismanns RS, Bertotti G, Ciulavu D, Sanders CAE, Cloetingh S, Dinu C (1997) Structural evolution of the Transylvanian Basin (Romania): a sedimentary basin in the bend zone of the Carpathians. Tectonophysics 272:249–268

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission track dating. Isotope Geosci 1:185–317

    Google Scholar 

  • Kovács S, Haas S, Csazar G, Szederkenyi T, Buda G, Nagymarosy A (2000) Tectonostratigraphic terranes in the pre-Neogene basement of the Hungarian part of the Pannonian area. Acta Geol Hung 43/3:225–328

    Google Scholar 

  • Kräutner HG, Krä0utner F, Szasz L (1982) Geological Map 1:50.000 No 20a Pietrosul Rodnei. Institutul de Geologie si Geofizica, Bucharest

    Google Scholar 

  • Marret R, Allmendinger RW (1990) Kinematic analysis of fault slip-data. J Struct Geol 12:973–986

    Article  Google Scholar 

  • Márton E, (2000) The Tisza Megatectonic Unit in the light of paleomagnetic data. Acta Geol Hung 43/3:329–343

    Google Scholar 

  • Márton E, Fodor L (1995) Combination of palaeomagnetic and stress data—a case study from North Hungary. Tectonophysics 242:99–114

    Article  Google Scholar 

  • Márton E, Fodor L (2003) Tertiary paleomagnetic results and structural analysis from the Transdanubian range (Hungary): rotational disintegration of the ALCAPA unit. Tectonophysics 363:201–224

    Article  Google Scholar 

  • Mason PRD, Seghedi I, Szákasc A, Downes H (1998) Magmatic constraints on geodynamic models of subduction in the Eastern Carpathians, Romania. Tectonophysics 297:157–176

    Article  Google Scholar 

  • Maţenco L, Bertotti G (2000) Tertiary tectonic evolution of the external East Carpathians (Romania). Tectonophysics 316:255–286

    Article  Google Scholar 

  • Maţenco L, Bertotti G, Cloetingh S, Dinu C (2003) Subsidence analysis and tectonic evolution of the external Carpathian-Moesian Platform during Neogene times. Sediment Geol 156:71–94

    Article  Google Scholar 

  • Nemčok M (1993) Transition from convergence to escape: field evidence from the West Carpathians. Tectonophysics 217:117–142

    Article  Google Scholar 

  • Pamic J (2000) Basic geological features of the Dinarides and South Tisia. In: Pancardi 2000 Fieldtrip Guidebook (eds. Pamic, J. and Tomljeenovic, B.). Vijesti 37/2:9–18

  • Pécskay Z, Edelstein O, Kovacs M, Bernád A, Crihan M (1994) K/Ar age determination of Neogene volcanic rocks from the Gutai Mts. Geol Carp 45(6):357–363

    Google Scholar 

  • Pécskay Z, Edelstein O, Seghedi I, Szakács A, Kovacs M, Crihan M, Bernád A (1995) K-Ar datings of Neogene-Quaternary calc-alkaline volcanic rocks in Romania. In: Downes H, Vaselli O (eds). Neogene and related magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica 7:53–61

  • Plasienka D, Grecula P, Mutis M, Kováč M, Hovorca D (1997a) Evolution and structure of the Western Carpathians: an overview. In: Grecula P, et al (eds) Geological Evolution of the Western Carpathians. Mineralia Slovaca Monograph, Bratislava pp 1–24

    Google Scholar 

  • Plasienka D, Putis M, Kováč M, Sefara J, Hrussecky I (1997b): Zones of Alpidic subduction and crustal underthrusting in the Western Carpathians. In: Grecula P, et al (eds) Geological Evolution of the Western Carpathians. Mineralia Slovaca Monograph, Bratislava, pp 35–42

    Google Scholar 

  • Pfiffner OA, Burkhard M (1987) Determination of paleo-stress axes orientations from fault, twin and earthquake data. Annales Tectonicae 1(1):48–57

    Google Scholar 

  • Ratschbacher L, Merle O, Davy P, Cobbold P (1991a) Lateral extrusion in the Eastern Alps; Part 1, boundary conditions and experiments scaled for gravity. Tectonics 10(2):245– 256

    Google Scholar 

  • Ratschbacher L, Frisch W, Linzer HG, Merle O, (1991b) Lateral extrusion in the Eastern Alps; Part 2, structural analysis. Tectonics 10(2):257– 271

    Google Scholar 

  • Ratschbacher L, Linzer HG, Moser F, Strusievicz RO, Bedelean H, Har N, Mogos PA (1993) Cretaceous to Miocene thrusting and wrenching along the central South Carpathians due to a corner effect during collision and orocline formation. Tectonics 12(4):855–873

    Google Scholar 

  • Royden LH (1988) Late Cenozoic Tectonics of the Pannonian Basin System In: Royden LH, Horváth F (eds). The Pannonian Basin; a study in basin evolution. AAPG Mem 45:27–48

  • Sanders C (1998) Tectonics and erosion: competitive forces in a compressive orogen. A fission track study of the Romanian Carpathians. Ph.D. thesis, Vrije Universiteit Amsterdam, Amsterdam, pp 1–204

  • Săndulescu M (1980) Sur certain problèmes de la corrélation des Carpathes orientales Roumaines avec les Carpathes Ucrainiennes. D S Inst geol geofiz LXV(5):163–180

    Google Scholar 

  • Săndulescu M, (1984) Geotectonica Romaniei. Editura Tehnica, Bucharest, pp 1–450

    Google Scholar 

  • Săndulescu M (1994) Overview of Romanian Geology. In: ALCAPA II field guide book. Romanian J of Tectonics and Reg Geol 75(suppl 2):3–15

  • Săndulescu M, Kräutner HG, Balintoni I, Russo-Săndulescu D, Micu M (1981) The Structure of the East Carpathians. (Guide Book B1), Carp-Balk Geol Assoc 12th Congress, Bucharest, pp 1–92

  • Săndulescu M, Szasz L, Balintoni I, Russo-Săndulescu D, Badescu D (1991): Geological Map 1:50.000 No 8d Viseu. Institutul de Geologie si Geofizica, Bucharest

    Google Scholar 

  • Săndulescu M, Visarion M, Stanica D, Stanica M, Atanasiu L (1993) Deep Structure of the inner Carpathians in the Maramures-Tisa zone (East Carpathians). Rom J Geophys 16:67–76

    Google Scholar 

  • Schmid SM, Berza T, Diaconescu V, Froitzheim N, Fügenschuh B (1998) Orogen-parallel extension in the South Carpathians. Tectonophysics 297:209–228

    Article  Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E; Schuster R (2004a) Tectonic map and overall architecture of the Alpine orogen. Eclogae geologicae Helvetiae 97:93–117

    Article  Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E; Schuster R (2004b) TRANSMED Transects IV, V and VI: Three lithospheric transects across the Alps and their forelands. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA (eds). The TRANSMED Atlas: The Mediterranean Region from Crust to Mantle. Springer, Berlin Heidelberg, attached CD (version of the explanatory text available from the first author as a pdf-file upon request)

  • Sperner B, CRC 461 Team (2005) Monitoring of Slab Detatchment in the Carpathians. In: Wenzel F (ed). Perspectives in modern Seismology. Lecture Notes in Earth Sciences 105:187–202

  • Sperner B, Ratschbacher L, Nemčok M (2002) Interplay between subduction retreat and lateral extrusion: tectonics of the Western Carpathians. Tectonics 21(6):1051

    Article  Google Scholar 

  • Stampfli GM, Borel G (2004) The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In: Cavazza W, Roure FM, Spakman W, Stampfli GM, Ziegler PA (eds) The TRANSMED Atlas: the Mediterranean Region from Crust to Mantle. Springer, Berlin and Heidelberg, pp 53–80

    Google Scholar 

  • Steininger FF, Wessely G (2000) From the Thethyan Ocean to the Paratethys Sea: Olicocene–Neogene Stratigraphy, Paleogeography and Paleobiogeography of the circum-Mediterranean region and the Oligocene–Neogene Basin evolution in Austria. Mitt Österr Geol Ges 92:95–116

    Google Scholar 

  • Wortel MJR, Spakman W (2000) Subduction and slab detachment in the Mediterreanean–Carpathian region. Science 290:1910–1917

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful for an excellent introduction into the geology of the area by M. Săndulescu and L. Maţenco and for all the discussions we had with them and with all the other Romanian colleagues. We would also like to particularly mention the fruitful interactions with L. Csontos, L. Fodor, S. Kovács, M. Marin, E. Márton, C. Pero, D. Radu, D. Badescu and C. Krezsek during our study. M. Marin is gratefully acknowledged for providing additional data from the eastern part of the study area. The careful and constructive review by L. Ratschbacher significantly improved a first version of the text. This work was financed by NF-projects Nr. 21-64979.01, Nr. 200020-105136/1 and Nr. 200021-101882/1, granted to B.F. and S.Sch., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tischler.

Appendices

Appendix 1

Table 1.

Table 1 Tabular overview on fault-slip data

Appendix 2

Figure  9.

Fig. 9
figure 9

Fault-slip data (Early Burdigalian top SE-thrusting of the Pienides)

Appendix 3

Figure  10.

Fig. 10
figure 10

Fault-slip data (Late Burdigalian NE–SW extension)

Appendix 4

Figure  11.

Fig. 11
figure 11

Fault-slip data (post-Burdigalan transpressional stage)

Appendix 5

Figure  12.

Fig. 12
figure 12

Fault-slip data (post-Burdigalian transtensional stage, eastern stations)

Appendix 6

Figure  13.

Fig. 13
figure 13

Fault-slip data (post-Burdigalian transtensional stage, western stations)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tischler, M., Gröger, H.R., Fügenschuh, B. et al. Miocene tectonics of the Maramures area (Northern Romania): implications for the Mid-Hungarian fault zone. Int J Earth Sci (Geol Rundsch) 96, 473–496 (2007). https://doi.org/10.1007/s00531-006-0110-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0110-x

Keywords

Navigation