Skip to main content
Log in

Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Teplá Crystalline unit (TCU), western Bohemian Massif, proves highly suitable for studying the effects of differential metamorphic reworking on the U–Th–Pb systematics in monazite, as the overprint of Variscan regional metamorphism onto high-grade Cadomian paragneisses intensifies progressively towards the northwest. Although variably hampered by scarcity, small size, and low uranium contents of monazite, isotope dilution–thermal ionisation mass spectrometry of monazite from paragneisses from the garnet, staurolite, and kyanite zones of the TCU gives a narrow 206Pb/238U age range from 387 to 382 Ma for Variscan peak metamorphism. These data are supported by 382–373 Ma monazite ages derived from electron microprobe analyses. Inheritance of older components in grains from the central TCU imply major “resetting” of pre-Variscan monazite around 380 Ma, possibly due to widespread garnet growth during Variscan metamorphism, which led to the consumption of pre-Variscan high-Y monazite and subsequent growth of new low-Y monazite. Concordant 498–494 Ma monazite ages in a migmatitic paragneiss close to the adjacent Mariánské Lázně Complex (MLC) grew in response to metagabbro emplacement in the MLC from 503 to 496 Ma and not during either Cadomian or Variscan regional metamorphism. Backscatter imaging and electron microprobe analyses reveal that discordant monazite of the migmatite comprises a mix of various age domains that range from ca. 540 to 380 Ma. Combined evidence presented here suggests that instead of Pb loss by volume diffusion, the apparent resetting of the U–Th–Pb systematics in monazite rather involves new crystal growth or regrowth by recrystallisation and dissolution/reprecipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beard BL, Medaris LG, Johnson CM, Jelínek E, Tonika J, Riciputi LR (1995) Geochronology and geochemistry of eclogites from the Mariánské Lázně complex, Czech republic: implications for Variscan orogenesis. Geol Rundsch 84:552–567

    Article  Google Scholar 

  • Bowes DR, Aftalion M (1991) U–Pb zircon isotope evidence of Early Ordovician and Late Proterozoic units in the Mariánské Lázně Complex, Central European Hercynides. N Jb Mineral Mh 7:315–326

    Google Scholar 

  • Bues C, Dörr W, Fiala J, Vejnar Z, Zulauf G (2002) Emplacement depth and radiometric ages of Paleozoic plutons of the Neukirchen-Kdyně massif: differential uplift and exhumation of Cadomian basement due to Carboniferous orogenic collapse (Bohemian Massif). Tectonophysics 352:225–243

    Article  Google Scholar 

  • Cháb J, Záček V (1994) Metamorphism of the Teplá Crystalline complex. KTB Rep 94(3):33–37

    Google Scholar 

  • Cháb J, Suchý, Vejnar Z (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 404–410

    Google Scholar 

  • Cháb J, Šrámek J, Pokorný L, Chlupáčová M, Manová M, Vejnar Z, Waldhauserová J, Žáček V (1997) The Teplá-Barrandian unit. In: Vrana S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci CGS Prague 47, pp 80–104

  • Chaloupský J, Chlupáč I, Mašek J, Waldhausrová J, Cháb J (1995) Teplá-Barrandian Zone (Bohemicum) stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 379–391

    Google Scholar 

  • Cherniak DJ, Watson EB, Grove M, Harrison, TM (2004) Pb diffusion in monazite: a combined RBS/SIMS study. Geochim Cosmochim Acta 68:829–840

    Article  Google Scholar 

  • Chlupáč I (1993) Geology of the Barrandian. A field trip guide. Waldemar-Kramer, Frankfurt a M, 163 pp

  • Cocherie A, Legendre O, Peucat JJ, Kouamelan AN (1998) Geochronology of polygenetic monazites constrained by in-situ electron microprobe Th–U total lead determination: implications for lead behaviour in monazite. Geochim Cosmochim Acta 62:2475–2497

    Article  Google Scholar 

  • Copeland P, Parrish RR, Harrison TM (1988) Identification of inherited Pb in monazite and ist implications for U–Pb systematics. Nature 333:760–763

    Article  Google Scholar 

  • Crowley JL, Ghent ED (1999) An electron microprobe study of the U–Th–Pb systematics of metamorphosed monazite: the role of Pb diffusion versus overgrowth and recrystallisation. Chem Geol 157:285–302

    Article  Google Scholar 

  • Dallmeyer RD, Urban M (1994) Variscan vs Cadomian tectonothermal evolution within the Teplá-Barrandian zone, Bohemian Massif, Czech Republic: 40Ar/39Ar mineral and whole-rock slate/phyllite ages. J Czech Geol Soc 39:21–22

    Google Scholar 

  • De Wolf CP, Belshaw NS, O’Nions R, Keith A (1993) Metamorphic history from micron-scale 207Pb/206Pb chronometry of Archean monazite. Earth Planet Sci Lett 120:207–220

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 97:135–149

    Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Fiala F (1948) Conglomerats algonkins de la Boheme centrale. Sbornik statniho geologickeho Ustavu Ceskoslovenske Republiky 15:399–612

    Google Scholar 

  • Finger F, Helmy HM (1998) Composition and total-Pb model ages of monazite from high-grade paragneisses in the Abu Swayel area, southern Eastern Desert. Egypt Mineral Petrol 62:269–289

    Article  Google Scholar 

  • Finger F, Krenn E, Riegler G, Romano S, Zulauf G (2002) Resolving Cambrian, Carboniferous, Permian and Alpine monazite generations in the polymetamorphic basement of eastern Crete (Greece) by means of the electron microprobe. Terra Nova 14:233–240

    Article  Google Scholar 

  • Foster G, Gibson HD, Parrish RR, Horstwood M, Fraser J, Tindle A (2002) Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chem Geol 191:183–207

    Article  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230:67–90

    Google Scholar 

  • Gebauer D, Grünenfelder M (1979) U–Pb zircon and Rb–Sr mineral dating of eclogites and their country rocks. Example: Münchberg Gneiss Massif, Northeast Bavaria. Earth Planet Sci Lett 42:35–44

    Article  Google Scholar 

  • Glodny J, Grauert B, Fiala J, Vejnar Z, Krohe A (1998) Metapegmatites in the western Bohemian massif: ages of crystallisation and metamorphic overprint, as constrained by U–Pb zircon, monazite, garnet, columbite and Rb–Sr muscovite data. Geol Rundsch 87:124–134

    Article  Google Scholar 

  • Heaman LM, Parrish RR (1991) U–Pb geochronology of accessory minerals. In: Heaman L, Ludden JN (eds) Applications of radiogenic isotope systems to problems in geology. MAC Short Course Handbook 19

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Met Geol 15:3–16

    Article  Google Scholar 

  • Jelínek E, Štědrá V, Cháb J (1997) The Mariánské Lázně complex. In: Vrana S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47

  • Kastl E, Tonika J (1984) The Mariánské Lázně metaophiolitic complex (west Bohemia). Krystal 17:59–76

    Google Scholar 

  • Kettner R (1917) Versuch einer stratigraphischen Einteilung des böhmischen Algonkiums. Geol Rundsch 8:169–188

    Article  Google Scholar 

  • Krenn E, Finger F (2002) Zur Stabilität von Monazit bei der Metamorphose. Erlanger Geol Abh Sonderband 3, TSK9

  • Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279

    Google Scholar 

  • Krogh TE (1973) A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim Cosmochim Acta 37:485–494

    Article  Google Scholar 

  • Krogh TE (1982) Improved accuracy of U–Pb ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    Article  Google Scholar 

  • Krohe A, Wawrzenitz N (2000) Domainal variations of U–Pb monazite ages and Rb–Sr whole rock dates in polymetamorphic paragneisses (KTB Drill Core, Germany): influence of strain and deformation mechanisms on isotope systems. J Met Geol 18:271–291

    Article  Google Scholar 

  • Ludwig KR (1980) Calculation of uncertainties of U–Pb isotope data. Earth Planet Sci Lett 46:212–220

    Article  Google Scholar 

  • Ludwig KR (2001) User’s manual for Isoplot/Ex Version 2 49, A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center Spec Pub 1a, Berkley

  • Manhès G, Allègre CJ, Dupré B, Hamelin B (1979) Lead–lead systematics, the ‘age of the earth’ and the chemical evolution of our planet in a new representation space. Earth Planet Sci Lett 44:91–104

    Article  Google Scholar 

  • Mathieu R, Zetterström L, Cuney M, Gauthier-Lafaye F, Hidaka H (2001) Alteration of monazite and zircon and lead migration as geochemical tracers of fluid paleocirculations around the Oklo-Okélobondo und Bangombé natural nuclear reaction zones (Franceville basin, Gabon). Chem Geol 171:147–171

    Article  Google Scholar 

  • Matte P, Maluski H, Reilich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: results of large scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Mašek J (1994) Proterozoic of the Central Bohemian region (Bohemicum). In: Klomínský J (eds) Geological atlas of the Czech Republic: stratigraphy. Czech Geol Surv, Praha, pp 1–1

    Google Scholar 

  • Montel JM, Foret S, Veschambre M, Nicollet Ch, Provost A (1996) A fast, reliable, inexpensive in-situ dating technique: electron microprobe ages on monazite. Chem Geol 131:37–53

    Article  Google Scholar 

  • Parrish RR (1987) An improved micro-capsule for zircon dissolution in U–Pb geochronology. Chem Geol 66:99–102

    Google Scholar 

  • Parrish RR (1990) U–Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Google Scholar 

  • Pyle JM, Spear FS (2000) Accessory-phase paragenesis in low P-migmatites, Chesham pond nappe, SE New Hampshire. Geol Soc Am Ann Meet Abstr 32:A297

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Article  Google Scholar 

  • von Quadt A (1997) U–Pb zircon and Sr–Nd–Pb whole-rock investigations from the continental deep drilling (KTB). Geol Rundsch 86:S258–S271

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR (2002) Indirect dating of mafic intrusions by SHRIMP U–Pb analysis of monazite in contact metamorphosed shale: an example from the Palaeoproterozoic Capricorn Orogen, Western Australia. Earth Planet Sci Lett 197:287–299

    Article  Google Scholar 

  • Rasmussen B, Fletcher IR, McNaughton NJ (2001) Dating low-grade metamorphic events by SHRIMP U–Pb analysis of monazite in shales. Geol 29:963–966

    Article  Google Scholar 

  • Rubatto D, Williams IS, Buick IS (2001) Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contrib Mineral Petrol 140:458–468

    Article  Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U–Pb ages: the Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Scherrer NC, Engi M, Gnos E, Jakob V, Liechti A (2000) Monazite analysis—from sample preparation to microprobe age dating and REE quantification. Schweiz Mineral Petrol Mit 80:93–105

    Google Scholar 

  • Seydoux-Guillaume A-M, Paquette J-L, Wiedenbeck M, Montel J-M, Heinrich W (2002) Experimental resetting of the U–Th–Pb systems in monazite. Chem Geol 191:165–181

    Article  Google Scholar 

  • Smith HA, Giletti BJ (1997) Lead diffusion in monazite. Geochim Cosmochim Acta 61:1047–1055

    Article  Google Scholar 

  • Söllner F, Nelson D (1995) Polyphase growth history of the gneiss zircons from the continental deep drilling program (KTB): preliminary evidence from U–Th–Pb ion microprobe analyses (SHRIMP). Terra Nova 7:350

    Google Scholar 

  • Spear FS, Parrish RR (1996) Petrology and cooling rates of the Valhalla Complex, British Columbia, Canada. J Petrol 37:733–765

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1973) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Suzuki K, Adachi M, Tanaka T (1991) Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central Japan: Th–U–total Pb evidence from an electron microprobe monazite study. Sed Geol 75:141–147

    Article  Google Scholar 

  • Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128:391–405

    Article  Google Scholar 

  • Teufel S, Heinrich W (1997) Partial resetting of the U–Pb isotope system in monazite through hydrothermal experiments: an SEM and U–Pb isotope study. Chem Geol 137:273–281

    Article  Google Scholar 

  • Timmermann H, Stedra V, Gerdes A, Noble S, Parrish RR, Dörr W (2004) The problem of dating HP metamorphism: an U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázne Complex, Czech Republic. J Petrol 45:1311–1338

    Article  Google Scholar 

  • Townsend KJ, Miller CF, D’Andrea JL, Ayers JC, Harrison TM, Coath CD (2000) Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chem Geol 172:95–112

    Article  Google Scholar 

  • Vavra G, Schaltegger U (1999) Post-granulite facies monazite growth and rejuvenation during Permian to Lower Jurassic thermal and fluid events in the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134: 405–414

    Article  Google Scholar 

  • Štědrá V, Kryza R, Kachlík V (2002) Coronitic metagabbros of the Mariánské Lázně Complex and Teplá Crystalline Unit: inferences for the tectonometamorphic evolution of the western margin of the Teplá-Barrandian Unit, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe. Geological Society of London special publication 201, pp 217–236

  • Waldhausrová J (1984) Proterozoic volcanic and intrusive rocks of the Jilove Zone in Central Bohemia. Krystal 17:77–97

    Google Scholar 

  • Waldhausrová J (1997) Geochemistry of volcanites (metavolcanics) in the western part of the TBU Precambrian and their original geotectonic setting. In: Vrana S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci 47:85–90

  • Záček V (1994) Garnets and metamorphic evolution of the Teplá crystalline complex, Western Bohemia. Zentralbl Geol Paläont 1(7/8):847–856

    Google Scholar 

  • Záček V, Slabý J, Cháb J (1993) The metamorphic evolution of the Teplá Crystalline Unit (In Czech). MS Czech Geol Surv Praha

  • Zeh A, Williams IS, Brätz H, Millar IL (2003) Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contrib Mineral Petrol 145:691–706

    Article  Google Scholar 

  • Zhu XK, O’Nions RK, Belshaw NS, Gibb AJ (1997) Significance of in-situ SIMS chronometry of zoned monazite from the Lewisian granulites, northwest Scotland. Chem Geol 135:35–53

    Article  Google Scholar 

  • Zulauf G (1997a) Von der Anchizone bis zur Eklogitfazies: Angekippte Krustenprofile als Folge der cadomischen und variscischen Orogenese im Teplá-Barrandium (Böhmische Masse). Geotekt Forsch 89:1–302

    Google Scholar 

  • Zulauf G (1997b) Constriction due to subduction: evidence for slab pull in the Mariánské Lázně complex (central European Variscides). Terra Nova 9:232–236

    Article  Google Scholar 

  • Zulauf G (2001) Structural style, deformation mechanisms and paleodifferential stress along an exposed crustal section: constraints on the rheology of quartzofeldspathic rocks at supra- and infrastructural levels (Bohemian Massif). Tectonophysics 332:211–237

    Article  Google Scholar 

  • Zulauf G, Vejnar Z (1998) Zur geologischen Entwicklung des Teplá-Kristallins und des Marienbader Komplexes (Böhmische Masse). Jahresb Mit Oberrhein Geol V 80:195–221

    Google Scholar 

  • Zulauf G, Dörr W, Fiala J,Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584

    Article  Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Z Deutsch Geol Ges 150:627–639

    Google Scholar 

  • Zulauf G, Bues C, Dörr W, Vejnar Z (2002) 10 km minimum throw along the West Bohemian shear zone: evidence for dramatic crustal thickening and high topography in the Bohemian Massif (European Variscides). Int J Earth Sci 91:850–864

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by DFG project Do 572/1-1. We thank Bernd Herrmann and Martin Wehnisch for mineral separation and J. Schastok for laboratory assistance. We further thank J. Glodny and I. Broska for the valuable comments that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Timmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timmermann, H., Dörr, W., Krenn, E. et al. Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci (Geol Rundsch) 95, 629–647 (2006). https://doi.org/10.1007/s00531-005-0060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0060-8

Keywords

Navigation