Skip to main content
Log in

Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Upper Rhine Graben (URG) is the most perceptible part of the European Cenozoic Rift System. Uplifted Variscan basement of the Black Forest and the Vosges forms the flanks of the southern part of the graben. Apatite and zircon fission-track (FT) analyses indicate a complex low-temperature thermal history of the basement that was deciphered by inverse modelling of FT parameters. The models were tested against the observed data and independent geological constraints. The zircon FT ages of 28 outcrop samples taken along an E–W trending transect across the Black Forest and the Vosges range from 136 to 312 Ma, the apatite FT ages from 20 to 83 Ma. The frequency distributions of confined track lengths are broad and often bimodal in shape indicating a complex thermal history. Cooling below 120°C in the Early Cretaceous to Palaeogene was followed by a discrete heating episode during the late Eocene and subsequent cooling to surface temperature. The modelled time–temperature (tT) paths point to a total denudation of the flanks of URG in the range of 1.0–1.7 km for a paleogeothermal gradient of 60°C/km, and 1.3–2.2 km for a paleogeothermal gradient of 45°C/km since the late Eocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009

    Article  Google Scholar 

  • Carlson WD (1990) Mechanisms and kinetics of apatite fission-track annealing. Am Mineral 75:1120–1139

    Google Scholar 

  • Cloos H (1939) Hebung-Spaltung-Vulkanismus. Geologische Rundschau 30:401–527

    Google Scholar 

  • Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta 55:1449–1465

    Article  Google Scholar 

  • Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33

    Article  Google Scholar 

  • Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580

    Article  Google Scholar 

  • Dunkl I (2002) TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28:3–12

    Article  Google Scholar 

  • Edel JB, Fluck P (1989) The upper Rhenish Shield basement (Vosges, Upper Rhinegraben and Schwarzwald): Main structural features deduced from magnetic, gravimetric and geological data. Tectonophysics 169:303–316

    Article  Google Scholar 

  • Foster DA, Gleadow AJW (1996) Structural framework and denudation history of the flanks of the Kenya and Anza Rifts, East Africa. Tectonics 15:258–271

    Article  Google Scholar 

  • Foster DA, Gleadow AJW, Reynolds SJ, Fitzgerald PF (1993) The denudation of metamorphic core complexes and the reconstruction of the Transition Zone, west central Arizona: constraints from apatite fission track thermochronology. J Geophys Res 98:2167–2185

    Article  Google Scholar 

  • Foster DA, Raza A (2002) Low-temperature thermochronological record of exhumation of the Bitterroot metamorphic core complex, northern Cordilleran Orogen. Tectonophysics 349:23–36

    Article  Google Scholar 

  • Fuchs K, Bonjer K-P, Gajewski D, Lueschen E, Prodehl C, Sandmeier K-J, Wenzel F, Wilhelm H (1987) Crustal Evolution of the Rhinegraben area. 1. Exploring rhe lower crust in the Rhinegraben rift by unified geophysical experiments. Tectonophysics 141:261–275

    Article  Google Scholar 

  • Fügenschuh B, Schmid SM (2003) Late stages of deformation and exhumation of an orogen constrained by fission-track data: a case study in the Western Alps. Geol Soc Am Bull 115:1425–1440

    Article  Google Scholar 

  • Galbraith RF (1988) Graphical display of estimates having differing standard errors. Technometrics 30:271–281

    Article  Google Scholar 

  • Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214

    Article  Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas 21:459–470

    Article  Google Scholar 

  • Gallagher K, Brown RW, Johnson C (1998) Fission track analysis and its applications to geological problems. Ann Rev Earth Planet Sci 26:519–572

    Article  Google Scholar 

  • Geyer OF, Gwinner MP (1991) Geologie von Baden-Württemberg. 4., neubearb Aufl der “Einführung in die Geologie von Baden-Württemberg”. Schweizerbart, Stuttgart

    Google Scholar 

  • Giamboni M, Ustaszewski K, Schmid SM, Schumacher ME, Wetzel A (2004) Plio-Pleistocene transpressional reactivation of Paleozoic and Paleogene structures in the Rhine-Bresse transform zone (northern Switzerland and eastern France). Int J Earth Sci 93:207–223

    Article  Google Scholar 

  • Gleadow AJW (1981) Fission track dating: what are the real alternatives. Nucl Tracks Radiat Meas 5:3–14

    Google Scholar 

  • Gleadow AJW, Brown RW (2000) Fission-track thermochronology and the long-term denudational response to tectonics. In: Summerfield MA (ed) Geomorphology and global tectonics. Wiley, New York, pp 57–75

    Google Scholar 

  • Green PF (1981) A new look at statistics in fission track dating. Nucl Tracks Radiat Meas 5:77–86

    Google Scholar 

  • Hurford AJ (1990) International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting. Nucl Tracks Radiat Meas 17:233–236

    Article  Google Scholar 

  • Hurford A, Carter A (1994) Regional thermo-tectonic histories of the Rhine Graben and adjacent Hercynian basement: a key to assessing the alpine influence in northwest Europe. In: 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, abstracts, p 148

  • Hurford AJ, Green PF (1982) A users’ guide to fission track dating calibration. Earth Planet Sci Lett 59:343–354

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Chem Geol 41:285–317

    Article  Google Scholar 

  • Illies JH (1977) Ancient and recent rifting in the Rhinegraben. Geologie en Mijnbouw 56:329–350

    Google Scholar 

  • Illies JH, Fuchs K (eds) (1974) Approaches to taphrogenesis. Schweizerbart, Stuttgart, p 460

  • Illies JH, Müller S (eds) (1970) Graben problems. Schweizerbart, Stuttgart, p 316

  • Kasuya M, Naeser CW (1988) The effect of α-damage on fission-track annealing in zircon. Nucl Tracks Radiat Meas 14:477–480

    Article  Google Scholar 

  • Keller J, Kraml M, Henjes-Kunst F (2002) 40Ar/39Ar single crystal dating of early volcanism in the Upper Rhine Graben and tectonic implications. Schweiz Mineral Petrogr Mitt 82:121–130

    Google Scholar 

  • Ketcham RA, Donelick RA, Carlson WD (1999) Variability of apatite fission-track annealing kinetics III: Extrapolation to geological time scales. Am Mineral 84:1235–1255

    Google Scholar 

  • Ketcham RA, Donelick RA, Donelick MB (2000) AFTSolve: a program for multi-kinetic modelling of apatite fission track data. Geol Mater Res 2:1–18

    Google Scholar 

  • Laslett GM, Galbraith RF (1996) Statistical modelling of thermal annealing of fission tracks in apatite. Geochim Cosmochim Acta 60:5117–5131

    Article  Google Scholar 

  • Laslett GM, Green PF, Duddy IR, Gleadow AJW (1987) Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem Geol (Isot Geosci Sect) 65:1–13

    Article  Google Scholar 

  • Michalski I (1987) Apatit-Spaltspuren-Datierungen des Grundgebirges von Schwarzwald und Vogesen: Die postvariszische Entwicklung. Doctoral dissertation, Heidelberg, p 125

    Google Scholar 

  • Naeser CW (1976) Fission-track dating. US Geol Surv Open-File Rep 76–190, pp 65

  • Naeser CW (1979) Thermal history of sedimentary basins: fission track dating of subsurface rocks. In: Scholle PA, Schluger PR (eds) Aspects of diagenesis. Soc Econ Paleontol Mineral Spec Publ, SEPM, Tulsa OK United States, pp 109–112

    Google Scholar 

  • Paul W (1955) Zur Morphogenese des Schwarzwaldes (I). Jh geol Landesamt Baden-Württ 1:395–427

    Google Scholar 

  • Price PB, Walker RM (1962a) A new detector for heavy particle studies. Phys Lett 3:113–115

    Article  Google Scholar 

  • Price PB, Walker RM (1962b) Observations of charged-particle tracks in solids. J Appl Phys 33:3407–3406

    Article  Google Scholar 

  • Prodehl C, Mueller S, Haak V (1995) The European Cenozoic rift system. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Developments in geotectonics 25. Elsevier, New York, pp 133–212

    Google Scholar 

  • Raab MJ, Brown RW, Gallagher K, Carter A, Weber K (2002) Late Cretaceous reactivation of major crustal shear zones in northern Namibia: constraints from apatite fission track analysis. Tectonophysics 349:75–92

    Article  Google Scholar 

  • Rothé JP, Sauer K (eds) (1967) The Rhinegraben progress report 1967. Abh Geol Landesamt Baden-Württemberg 6, pp 146

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21:6-1-17

    Article  Google Scholar 

  • Tagami T, Shimada C (1996) Natural long-term annealing of the zircon fission track system around a granitic pluton. J Geophys Res 101/B4:8245–8255

    Article  Google Scholar 

  • Tagami T, Galbraith RF, Yamada R, Laslett GM (1998) Revised annealing kinetics of fission tracks in zircon and geological implications. In: Van den Haute P, De Corte F (eds)Advances in fission track geochronology. Kluwer, Dordrecht, pp 99–112

    Google Scholar 

  • Timar-Geng Z, Fügenschuh B, Schaltegger U, Wetzel A (2004) The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area. Schweiz Mineral Petrogr Mitt 84:257–269

    Google Scholar 

  • von Gehlen K (1987) Formation of Pb-Zn-F-Ba mineralizations in SW Germany: a status report. Fortschr Miner 65:87–113

    Google Scholar 

  • Wagner GA (1979) Correction and interpretation of fission track ages. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 170–177

    Google Scholar 

  • Wagner GA (1990) Apatite fission-track dating of the crystalline basement of Middle Europe: concepts and results. Nucl Tracks Radiat Meas 17:277–282

    Article  Google Scholar 

  • Wagner GA, Reimer GM, Jäger E (1977) Cooling ages derived by apatite fission track, mica Rb–Sr, and K–Ar dating: the uplift and cooling history of the central Alps. Mem Inst Geol Mineral Univ Padova 30:1–27

    Google Scholar 

  • Wagner GA, Michalski I, Zaun P (1989) Apatite fission-track dating of the Central European basement: post-Variscian thermotectonic evolution. In: The German Continental Deep Drilling Program (KTB). Springer, Berlin Heidelberg New York, pp 481–500

    Google Scholar 

  • Werner W, Franzke HJ (2001) Postvariszische bis neogene Bruchtektonik und Mineralisation im südlichen Zentralschwarzwald. Z Dt Geol Ges 152:405–437

    Google Scholar 

  • Wernicke RS, Lippolt HJ (1997) (U+Th)-He evidence of Jurassic continuous hydrothermal activity in the Schwarzwald basement, Germany. Chem Geol 138:273–285

    Article  Google Scholar 

  • Wetzel A, Allenbach R, Allia V (2003) Reactivated basement structures affecting the sedimentary facies in a tectonically „quiescent” epicontinental basin: an example from NW Switzerland. Sediment Geol 157:153–172

    Article  Google Scholar 

  • Wimmenauer W, Schreiner A (1990) Erläuterungen zu Blatt 8114, Feldberg. Geol Karte Baden-Württ 1:25 000, Stuttgart, p 134

  • Wyss A (2001) Apatit Spaltspur Untersuchungen in der Vorwaldscholle (SW-Deutschland). Unpubl diploma thesis, Univ Basel, p 69

  • Ziegler PA (1990) Geological atlas of Western and Central Europe. Shell Internationale Petroleum Maatschappij, Geological Society Publishing House, London, p 239

    Google Scholar 

  • Ziegler PA, Cloething S, van Wees J-D (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Swiss National Science Foundation (Project Nos. 21-57038.99 and 20-64567.01). We thank M. Brix, U.A. Glasmacher and M. Rahn for their constructive comments and suggestions that substantially improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltan Timar-Geng.

Appendix

Appendix

Modelling details

This appendix (Tables 4, 5) contains information about parameters used for inverse modelling. The time for the first constraint was chosen based on the consideration that this time should be somewhat earlier than the FT age of the oldest and thus most resistant apatite grains to allow for age reduction by partial annealing (Ketcham et al. 2000). Thus, the temperature for the first constraint was set at ~130°C providing that there are no fission tracks present as an initial condition. Modelled t–T paths were initially defined to be non-monotonic, aiming at finding solutions by the program, particularly any possible heating events and their timing. The initial model runs also constrain the time of cooling below the track retention temperature, which can be used as initial constraints for subsequent model runs. In a next step, the new initial constraint and additional intermediate constraints were used to better evaluate individual heating and cooling events. Model runs were so gradually refined by forcing restrictions on the t–T paths as suggested by consecutive modelling results and geological observations.

Table 4 Modelling details of the Black Forest samples
Table 5 Modelling details of the Vosges samples

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timar-Geng, Z., Fügenschuh, B., Wetzel, A. et al. Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben. Int J Earth Sci (Geol Rundsch) 95, 685–702 (2006). https://doi.org/10.1007/s00531-005-0059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-005-0059-1

Keywords

Navigation