Skip to main content
Log in

Ground states of attractive Bose gases near the critical rotating velocity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study ground states of attractive Bose gases, which are confined in a harmonic trap \(V(x)=x_1^2+\Lambda x_2^2\) (\(\Lambda \ge 1\)) rotating at the velocity \(\Omega \). For any \(0\le \Omega <\Omega ^*:=2\), where \(\Omega ^*\) is called a critical rotational velocity, it is well known that ground states exist if and only if \( a<a^*\) for some critical constant \(0<a^*<\infty \), where \(a>0\) denotes the product for the number of particles times the absolute value of the scattering length. In this paper, we consider the critical rotating case, where the rotational velocity \(\Omega =\Omega ^*\), to study the existence and non-existence of ground states with respect to \(a>0\). As imposed in Remark 2.2 of Lewin et al. (Blow-up profile of rotating 2D focusing bose gases. macroscopic limits of quantum systems, Springer, Berlin, 2018), we also analyze the limiting behavior of ground states as \(a\nearrow a^*\) for the case where \(\Omega =\Omega _{a}:=\Omega ^*\sqrt{1-C_0(a^*-a)^m}\nearrow \Omega ^*\), \(0\le m<\frac{1}{2}\) and \(0<C_0<1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abo-Shaeer, J.R., Raman, C., Vogels, J.M., Ketterle, W.: Observation of vortex lattices in Bose-Einstein condensates. Science 292, 476–479 (2001)

    Article  Google Scholar 

  2. Aftalion, A., Alama, S., Bronsard, L.: Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. Arch. Ration. Mech. Anal. 178, 247–286 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aftalion, A., Jerrard, R.L., Royo-Letelier, J.: Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260, 2387–2406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, M.H., Ensher, J.R., Matthews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  5. Arbunich, J., Nenciu, I., Sparber, C.: Stability and instability properties of rotating Bose-Einstein condensates. Lett. Math. Phys. 109, 1415–1432 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, W.Z., Cai, Y.Y.: Ground states of two-component Bose-Einstein condensates with an internal atomic Josephson junction, East Asian. J. Appl. Math. 1, 49–81 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Bellazzini, J., Boussaïd, N., Jeanjean, L., Visciglia, N.: Existence and stability of standing waves for supercritical NLS with a partial confinement. Commun. Math. Phys. 353, 229–251 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008)

    Article  Google Scholar 

  9. Bradley, C. C., Sackett, C. A., Tollett, J. J., Hulet, R. G.: Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75 (1995), 1687. Erratum Phys. Rev. Lett. 79, (1997), 1170

  10. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Math, vol. 10. Courant Institute of Mathematical Science/AMS, New York (2003)

    Google Scholar 

  12. Correggi, M., Rougerie, N.: Boundary behavior of the Ginzburg–Landau order parameter in the surface superconductivity regime. Arch. Ration. Mech. Anal. 219, 553–606 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  14. Dinh, V.D.: Existence and stability of standing waves for nonlinear Schrödinger equations with a critical rotational speed. Lett. Math. Phys. 112, 53 (2022)

    Article  MATH  Google Scholar 

  15. Dinh, V. D., Nguyen, D.T., Rougerie, N.: Blow-up of 2D attractive Bose-Einstein condensates at the critical rotational speed, 2023. hal-03752950v3

  16. Fetter, A.L.: Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009)

    Article  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1997)

    MATH  Google Scholar 

  18. Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–466 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gross, E.P.: Hydrodynamics of a superfluid condensate. J. Math. Phys. 4, 195–207 (1963)

    Article  Google Scholar 

  20. Guo, Y.J., Luo, Y., Yang, W.: The nonexistence of vortices for rotating Bose-Einstein condensates with attractive interactions. Arch. Ration. Mech. Anal. 238, 1231–1281 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose-Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, Y.J., Wang, Z.Q., Zeng, X.Y., Zhou, H.S.: Properties of ground states of attractive Gross–Pitaevskii equations with multi-well potentials. Nonlinearity 31, 957–979 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, Q., Lin, F. H.: Elliptic Partial Differential Equations, Courant Lecture Note in Math. 1, Courant Institute of Mathematical Science/AMS, New York (2011)

  24. Huepe, C., Metens, S., Dewel, G., Borckmans, P., Brachet, M.E.: Decay rates in attractive Bose-Einstein condensates. Phys. Rev. Lett. 82, 1616–1619 (1999)

    Article  Google Scholar 

  25. Kwong, M.K.: Uniqueness of positive solutions of \(\Delta u-u+u^p=0~in~{\mathbb{R} }^N\). Arch. Ration. Mech. Anal. 105, 243–266 (1989)

    Article  MATH  Google Scholar 

  26. Lewin, M., Nam, P.T., Rougerie, N.: Blow-Up Profile of Rotating 2D Focusing Bose Gases. Macroscopic Limits of Quantum Systems, Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  27. Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases. Trans. Am. Math. Soc. 368(9), 6131–6157 (2016)

    Article  MATH  Google Scholar 

  28. Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    Google Scholar 

  29. Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, K., Pan, X.: Gauge invariant eigenvalue problems in \({\mathbb{R} }^2\) and \({\mathbb{R} }^2_{+}\). Trans. Am. Math. Soc. 3, 1247–1276 (2000)

    MATH  Google Scholar 

  31. Lundh, E., Collin, A., Suominen, K.-A.: Rotational states of Bose gases with attractive interactions in anharmonic traps. Phys. Rev. Lett. 92, 070401 (2004)

    Article  Google Scholar 

  32. Luo, P., Peng, S., Wei, J., Yan, S.: Excited states on Bose-Einstein condensates with attractive interactions. Calc. Var. Partial Differ. Equ. 60, 155 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Madison, K., Chevy, F., Dalibard, J., Wohlleben, W.: Vortex formation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 84, 806 (2000)

    Article  Google Scholar 

  34. Madison, K., Chevy, F., Dalibard, J., Wohlleben, W.: Vortices in a stirred Bose-Einstein condensate. J. Mod. Opt. 47, 2715–2723 (2000)

    Article  Google Scholar 

  35. Ni, W.-M., Takagi, I.: On the shape of least-energy solutions to a semilinear Neumann problem. Commun. Pure Appl. Math. 44, 819–851 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP. 13, 451–454 (1961)

    Google Scholar 

  37. Weinstein, M.I.: Nonlinear Schrödinger equations and sharp interpolations estimates. Commun. Math. Phys. 87, 567–576 (1983)

    Article  MATH  Google Scholar 

  38. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications 24. Birkäur Boston Inc, Boston (1996)

    Google Scholar 

  39. Zhang, J.: Stability of standing waves for nonlinear Schrödinger equations with unbounded potentials. Z. Angew. Math. Phys. 51, 498–503 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang, J.: Stability of attractive Bose-Einstein condensates. J. Stat. Phys. 101, 731–746 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zwierlein, M.W., Abo-Shaeer, J.R., Schirotzek, A., Schunck, C.H., Ketterle, W.: Vortices and superfluidity in a strongly interacting fermi gas. Nature 435, 1047–1051 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Professor Tobias Weth for his fruitful discussions on the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Guo is partially supported by NSFC under Grants 12225106 and 11931012. L. Lu is partially supported by NSFC under Grant No. 11601523.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, Y., Liu, Q. et al. Ground states of attractive Bose gases near the critical rotating velocity. Calc. Var. 62, 210 (2023). https://doi.org/10.1007/s00526-023-02547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02547-x

Mathematics Subject Classification

Navigation