Skip to main content
Log in

Nonlinear stability of sinusoidal Euler flows on a flat two-torus

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Sinusoidal flows are important explicit stationary solutions of the incompressible Euler equation on a flat two-torus. In this paper, we prove that sinusoidal flows related to least eigenfunctions of the negative Laplacian are, up to phase translations, nonlinearly stable under \(L^p\) norm of the vorticity for any \(1<p<+\infty \), which improves a classical stability result by Arnold. The key point of the proof is to distinguish least eigenstates with different amplitudes by using isovortical property of the Euler equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abe, K., Choi, K.: Stability of Lamb dipoles. Arch. Ration. Mech. Anal. 244, 877–917 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Conditions for nonlinear stability plane curvilinear flow of an idea fluid. Sov. Math. Dokl. 6, 773–777 (1965)

    Google Scholar 

  3. Arnold, V.I.: On an a priori estimate in the theory of hydrodynamical stability. Amer. Math. Soc. Transl. 79, 267–269 (1969)

    Google Scholar 

  4. Arnold, V. I., Khesin, B. A.: Topological methods in hydrodynamics, 2nd ed. Applied Mathematical Sciences 125, Springer, Cham (2021)

  5. Bardos, C., Guo, Y., Strauss, W.: Stable and unstable ideal plane flows. Chinese Ann. Math. Ser. B 23, 149–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belenkaya, L., Friedlander, S., Yudovich, V.: The unstable spectrum of oscillating shear flows. SIAM J. Appl. Math. 59, 1701–1715 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burton, G.R.: Rearrangements of functions, maximization of convex functionals, and vortex rings. Math. Ann. 276, 225–253 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burton, G.R.: Global nonlinear stability for steady ideal fluid flow in bounded planar domains. Arch. Ration. Mech. Anal. 176, 149–163 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burton, G.R.: Compactness and stability for planar vortex-pairs with prescribed impulse. J. Differ. Equ. 270, 547–572 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burton, G.R., Nussenzveig Lopes, H.J., Lopes Filho, M.C.: Nonlinear stability for steady vortex pairs. Commun. Math. Phys. 324, 445–463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Butta, P., Negrini, P.: On the stability problem of stationary solutions for the Euler equation on a 2-dimensional torus. Regul. Chaotic Dyn. 15, 637–645 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calderón, A.P., Zygmund, A.: Singular integrals and periodic functions. Studia Math. 14, 249–271 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, D., Wang, G.: Steady vortex patches with opposite rotation directions in a planar ideal fluid. Calc. Var. Partial Differ. Equ. 58(2019), Paper No. 75

  14. Cao, D., Wang, G.: Nonlinear stability of planar vortex patches in an ideal fluid. J. Math. Fluid Mech. 23(2021), Paper No. 58

  15. Choi, K., Lim, D.: Stability of radially symmetric, monotone vorticities of 2D Euler equations. Calc. Var. Partial Differ. Equ. 61(2022), Paper No. 120

  16. Dullin, H.R., Worthington, J.: Stability results for idealized shear flows on a rectangular periodic domain. J. Math. Fluid Mech. 20, 473–484 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grafakos, L.: Classical Fourier Analysis, Third edition, Graduate Texts in Mathematics, vol. 249. Springer, New York (2014)

    Book  Google Scholar 

  18. Batt, J., Rein, G.: A rigorous stability result for the Vlasov-Poisson system in three dimensions. Ann. Math. Pura Appl. 164, 133–154 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedlander, S., Strauss, W., Vishik, M.: Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré. Anal. Non Linéare. 14, 187–209 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, Y.: On 2D Euler equations. I. On the energy-Casimir stabilities and the spectra for linearized 2D Euler equations. J. Math. Phys. 41, 728–758 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Majda, A.J., Bertozzi, A.L.: Vorticity and incompressible flow. In: Cambridge Texts in Applied Mathematics, Vol. 27. Cambridge University Press (2002)

  22. Marchioro, C., Pulvirenti, M.: Mathematical theory of incompressible noviscous fluids. Springer (1994)

  23. Mesalkin, L.D., Sinai, J.G.: Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid. Prikl. Mat. Meh. 25:1140–1143 (in Russian); translated as J. Appl. Math. Mech. 25(1961):1700–1705

  24. Titchmarsh, E.C.: Eigenfunction expansions associated with second-order differential equations, Vol. 2. Oxford University Press (1958)

  25. Wang, G.: Nonlinear stability of planar steady Euler flows associated with semistable solutions of elliptic problems. Trans. Amer. Math. Soc. 375, 5071–5095 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, G.: Stability of 2D steady Euler flows related to least energy solutions of the Lane-Emden equation. J. Differ. Equ. 342, 596–621 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wirosoetisno, D., Shepherd, T.G.: Nonlinear stability of Euler flows in two-dimensional periodic domains. Geophys. Astrophys. Fluid Dyn. 90, 229–246 (1999)

    Article  MathSciNet  Google Scholar 

  28. Wolansky, G., Ghil, M.: An extension of Arnold’s second stability theorem for the Euler equations. Phys. D 94, 161–167 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wolansky, G., Ghil, M.: Nonlinear stability for saddle solutions of ideal flows and symmetry breaking. Commun. Math. Phys. 193, 713–736 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G. Wang was supported by National Natural Science Foundation of China (12001135) and China Postdoctoral Science Foundation (2019M661261, 2021T140163). B. Zuo was supported by National Natural Science Foundation of China (12101154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijun Zuo.

Additional information

Communicated by Y. Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zuo, B. Nonlinear stability of sinusoidal Euler flows on a flat two-torus. Calc. Var. 62, 207 (2023). https://doi.org/10.1007/s00526-023-02546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02546-y

Mathematics Subject Classification

Navigation