Skip to main content
Log in

A global second-order Sobolev regularity for p-Laplacian type equations with variable coefficients in bounded domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\Omega \subset {{\mathbb {R}}}^n\) be a bounded convex domain with \(n\ge 2\). Suppose that A is uniformly elliptic and belongs to \(W^{1,n}\) when \(n\ge 3\) or \(W^{1,q}\) for some \(q>2\) when \(n=2\). For \(1<p<\infty \), we establish a global second-order regularity estimate

$$\begin{aligned}\Vert D[|Du|^{p-2} Du]\Vert _{L^2(\Omega )}+\Vert D[ \langle ADu,Du\rangle ^{\frac{p-2}{2} }A Du]\Vert _{L^2(\Omega )} \le C \Vert f\Vert _{L^2(\Omega )} \end{aligned}$$

for the inhomogeneous p-Laplace type equation

$$\begin{aligned} -\textrm{div}\big (\langle A Du,Du\rangle ^{\frac{p-2}{2}} A Du\big )=f \end{aligned}$$

in \(\Omega \) with Dirichlet or Neumann homogeneous boundary condition. Similar result was also established for certain bounded Lipschitz domains whose boundary is weakly second-order differentiable and satisfies some smallness assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Adolfsson, V.: \(L^2\)-integrability of second-order derivatives for Poisson’s equation in nonsmooth domains. Math. Scand. 70, 146–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I. Commun. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernstein, S.: Sur la nature analytique des solutions des équations aux dérivées partielles du second ordre. Math. Ann. 59, 20–76 (1904)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balci, A.K., Cianchi, A., Diening, L., Maz’ya, V.: A pointwise differential inequality and second-order regularity for nonlinear elliptic systems. Math. Ann. 383(3–4), 1775–1824 (2022)

    MathSciNet  MATH  Google Scholar 

  5. Cianchi, A., Maz’ya, V.G.: Global Lipschitz regularity for a class of quasilinear elliptic equations. Comm. Partial Differ. Equ. 36(1), 100–133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cianchi, A., Maz’ya, V.G.: Gradient regularity via rearrangements for p-Laplacian type elliptic boundary value problems. J. Eur. Math. Soc. (JEMS) 16(3), 571–595 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cianchi, A., Maz’ya, V.G.: Quasilinear elliptic problems with general growth and merely integrable, or measure, data. Nonlinear Anal. 164, 189–215 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cianchi, A., Maz’ya, V.G.: Second-order two-sided estimates in nonlinear elliptic problems. Arch. Rational Mech. Anal 229, 569–599 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cianchi, A., Maz’ya, V.G.: Optimal Second-order regularity for the p-Laplace system. J. Math. Pures Appl. 132, 41–78 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  11. Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  12. Jones, P.W.: Quasiconformal mappings and extendability of functions in Sobolev spaces. Acta Math. 147, 71–88 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Koskela, P., Zhang, Y., Zhou, Y.: Morrey–Sobolev extension domains. J. Geom. Anal. 27, 1413–1434 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ladyzenskaya, O.A., Ural’ceva, N.N.: Quasilinear elliptic equations and variational problems with many indepedent variables. Russ. Math. Surv. 16(1), 17–91 (1961)

    Article  Google Scholar 

  15. Ladyzenskaya, O.A., Ural’ceva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  16. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzenskaya and Ural’ceva for elliptic equations. Commun. Partial. Differ. Equ. 16, 311–361 (1991)

    Article  MATH  Google Scholar 

  17. Maz’ya, V.G.: The negative spectrum of the higher-dimensional Schrödinger operator. Dokl. Akad. Nauk SSSR 144 (1962)(Russian), 721-722. English translation: Sov. Math. Dokl. 3 (1962)

  18. Maz’ya, V.G.: On the theory of the higher-dimensional Schrödinger operator. Izv. Akad. Nauk SSSR Ser. Mat. 28, 1145–1172 (1964). (Russian)

    MathSciNet  MATH  Google Scholar 

  19. Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  20. Maz’ya, V.G., Shaposhnikova, T.O.: Theory of Sobolev Multipliers. With Applications to Differential and Integral Operators. Springer, Berlin (2009)

    MATH  Google Scholar 

  21. Swanson, D., Ziemer, W.P.: Sobolev functions whose inner trace at the boundary is zero. Ark. Mat. 37, 373–380 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schauder, J.: Sur les équations linéaires du type elliptique a coefficients continuous. C. R. Acad. Sci. Paris 199, 1366–1368 (1934)

    MATH  Google Scholar 

  23. Talenti, G.: Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Math. Pura Appl. 120, 159–184 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  24. Trudinger, N.S.: On harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure. Appl. Math. 20, 721–747 (1967)

Download references

Acknowledgements

The authors would like to thank the anonymous referee for several valuable comments and suggestions in the previous version of this paper.

Funding

The first author is supported by NSFC (No.12001041 & No.11871088 & No. 12171031) and Beijing Institute of Technology Research Fund Program for Young Scholars. The second author is supported by China Postdoctoral Science Foundation funded project (No. BX20220328) and by NSFC (No. 12201612). The third author is supported by NSFC (No. 11871088 & No.12025102) and by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fa Peng.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Communicated by Neil S. Trudinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Proof of Lemma 7.1

Appendix A: Proof of Lemma 7.1

To prove Lemma 7.1, given any bounded uniform domain \(\Omega \), below we briefly recall the construction of the extension operator \(\Lambda : \dot{W}^{1,q} (\Omega )\rightarrow \dot{W}^{1,q} ({{{{\mathbb {R}}}}^n})\) by Jones [12] (see also [13]). For \(1\le q<\infty \), denote by \(\dot{W}^{1,q} (\Omega )\) the homogeneous Sobolev space in any domain \(\Omega \subset {{{{\mathbb {R}}}}^n}\), that is, the collection of all function \(v\in L^q_{\mathop \mathrm {\,loc\,}}(\Omega )\) with its distributional derivative \(Dv\in L^q(\Omega )\).

Recall that \(\Omega \) is an \(\epsilon _0 \)-uniform domain for some \(\epsilon _0>0\) if for any \(x,y\in \Omega \) one can find a rectifiable curve \({\gamma }:[0,T] \rightarrow \Omega \) joining xy so that

$$\begin{aligned} T=\ell ({\gamma }) \le \frac{1}{\epsilon _0} |x-y| \,\hbox {and}\, {\mathop \mathrm {\,dist\,}}({\gamma }(t),\partial \Omega )\ge \epsilon _0\min \{t,T-t\}\quad \forall t\in [0,T], \end{aligned}$$

where C is a constant. Note that \(|\partial \Omega |=0\). It is well-known that Lipschitz domains are always \(\epsilon _0\)-uniform domains, where \(\epsilon _0\) depends on Lipschitz constant of \(\Omega \). In the case \(\Omega \) is convex, \(\epsilon _0\) depends on \({\mathop \mathrm {\,diam\,}}\Omega \) and \(|\Omega |\).

Denote by \(W_1=\{S_j\}\) the Whitney decomposition of \(\Omega \) and \(W_2=\{Q_j\}\) as the Whitney decomposition of \(({\overline{\Omega }})^\complement \) as [13, Section 2]. Set also \(W_3=\{Q\in W_2, \ell (Q)\le \frac{\epsilon _0}{16n}{\mathop \mathrm {\,diam\,}}\Omega \}\) as [13, Section 2]. By Jones and also [13], any cube \(Q\in W_3\) has a reflection cube \(Q^*\in W_1\) such that \( \ell (Q)\le \ell (Q ^*)\le 4\ell (Q)\) and hence \({\mathop \mathrm {\,dist\,}}(Q^*,Q)\le C\ell (Q)\) for some constant \(C\ge 1\) depending only on \(\epsilon _0\) and n. For any \(Q\in W_2\setminus W_3\) we just write \(Q^*=\Omega \).

Let \(\{\varphi _Q\}_{Q\in W_2}\) be a partition of unit associated to \(W_2\) so that \({\text { supp}}\varphi _Q\subset \frac{17}{16}Q\). The extension operator is then defined by

Such extension operator is a slight modification of that in [13] and also [12].

By essentially the argument of Jones [12] (see also [13]), for \(1\le q<\infty \) one has that \(\Lambda :\dot{W}^{1,q} (\Omega )\rightarrow \dot{W}^{1,q} (\Omega )\) is a linear bounded extension operator, that is, for any \(v\in W^{1,q}(\Omega )\) we have \(\Lambda v\in \dot{W}^{1,q}({{{{\mathbb {R}}}}^n})\) so that \( \Lambda v|_\Omega =v\) and \(\Vert D \Lambda v\Vert _{L^q({{{{\mathbb {R}}}}^n})}\le C\Vert Dv\Vert _{L^q(\Omega )}\) for some C depending on \(n,\epsilon _0\) and q.

Moreover, by the arguments in [13], for any \(x\in {\overline{\Omega }}\) and \(r\le \frac{\epsilon _0}{16n}{\mathop \mathrm {\,diam\,}}\Omega \), one has \(\Vert D \Lambda v\Vert _{L^n(B(x,r))}\le C\Vert Dv\Vert _{L^n(\Omega \cap B({\bar{x}},Cr))}.\) Indeed, the choice of r implies that \(B(x,r)\cap Q=\emptyset \) for any \(Q\in W_2\setminus W_3\) and hence one only need to bound \(\textbf{H}_{1,1}\) in [13, P.1422] and \(\textbf{H}_{1,2}=0\) and \(\textbf{H}_2=0\) in [13, P.1422]. Thus \(\Vert D \Lambda v\Vert _{L^n(B(x,r){\setminus } \Omega )}\le C\Vert Dv\Vert _{L^n(\Omega \cap B({\bar{x}},Cr))}\). Moreover, for any \(x\notin {\overline{\Omega }}\), denote by \({\bar{x}}\in \partial \Omega \) is the nearest point of x. If \({\mathop \mathrm {\,dist\,}}(x,\partial \Omega )<r<{\mathop \mathrm {\,diam\,}}\Omega \), one has

$$\begin{aligned} \Vert D \Lambda v\Vert _{L^q(B(x,r))}\le \Vert D \Lambda v\Vert _{L^q(B({\bar{x}},2r))} \le C\Vert Dv\Vert _{L^q(\Omega \cap B({\bar{x}},Cr))}. \end{aligned}$$

Proof of Lemma 7.1

Let \(A=(a_{ij})\in {\mathcal {E}}_L(\Omega )\) with \(DA\in L^q(\Omega )\) with \(q\ge n\). Write \(\widetilde{A}=(\Lambda a_{ij})\). By the boundedness of \(\Lambda \), we have \(\Vert D\widetilde{A}\Vert _{L^q({{{{\mathbb {R}}}}^n})}<C\Vert DA\Vert _{L^q(\Omega )}\). Noting

we know that \( \widetilde{A}\in {\mathcal {E}}_L ({{{{\mathbb {R}}}}^n})\). Moreover in the case \(\Vert DA\Vert _{L^n(\Omega )}<\infty \), we have \( \Phi _{\widetilde{A}}(\Omega _\eta ,r)\le C\Phi _{ A}(\Omega , Cr)\) whenever \(x\in \Omega _\eta \) and \(0< \eta<r<{\mathop \mathrm {\,diam\,}}\Omega \).

For \(\epsilon >0\), \(A^\epsilon = \widetilde{A}*\eta _\epsilon \), where \(\eta _\epsilon \) is the standard smooth mollifier. Since \(\langle \widetilde{A}*\eta (x)\xi , \xi \rangle =\langle \widetilde{A} \xi , \xi \rangle *\eta (x)\), we know that \(A^\epsilon \in {\mathcal {E}}_L({{{{\mathbb {R}}}}^n})\). Moreover, in the case \(\Vert DA\Vert _{L^n(\Omega )}<\infty \), we have \(\Vert \widetilde{A}*\eta _\epsilon \Vert _{L^n(B(x,r))}\le \Vert \widetilde{A} \Vert _{L^n(B(x,r+\epsilon ))}\). For any \(x\in \Omega _\eta \) and \(0< \epsilon \le \eta<r<{\mathop \mathrm {\,diam\,}}\Omega \), we know that \( \Phi _{ A^\epsilon }(\Omega _\eta ,r)\le \Phi _{ \widetilde{A} }(\Omega _{\epsilon +\eta },r+\epsilon ) \). and hence \( \Phi _{ A^\epsilon }(\Omega _\eta ,r)\le C\Phi _{ A}(\Omega , Cr)\) as desired. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Q., Peng, F. & Zhou, Y. A global second-order Sobolev regularity for p-Laplacian type equations with variable coefficients in bounded domains. Calc. Var. 62, 191 (2023). https://doi.org/10.1007/s00526-023-02538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02538-y

Mathematics Subject Classification

Navigation