Skip to main content
Log in

Multisolitons are the unique constrained minimizers of the KdV conserved quantities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following variational problem: minimize the \((n+1)\)st polynomial conserved quantity of KdV over \(H^n(\mathbb {R})\) with the first n conserved quantities constrained. Maddocks and Sachs (Comm Pure Appl Math 46:867–901, 1993) used that n-solitons are local minimizers for this problem in order to prove that n-solitons are orbitally stable in \(H^n(\mathbb {R})\).

Given n constraints that are attainable by an n-soliton, we show that there is a unique set of n amplitude parameters so that the corresponding multisolitons satisfy the constraints. Moreover, we prove that these multisolitons are the unique global constrained minimizers. We then use this variational characterization to provide a new proof of the orbital stability result from Maddocks and Sachs (Comm Pure Appl Math 46:867–901, 1993) via concentration compactness.

In the case when the constraints can be attained by functions in \(H^n(\mathbb {R})\) but not by an n-soliton, we discover new behavior for minimizing sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albert, J.P.: Concentration compactness and the stability of solitary-wave solutions to nonlocal equations, Applied analysis (Baton Rouge, LA, 1996), pp. 1-29 (1999). MR1647189

  2. Albert, J.P.: A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. 39(7), 3635–3670 (2019). (MR3960482)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albert, J.P., Bona, J.L., Nguyen, N.V.: On the stability of KdV multi-solitons. Differ. Integr. Equ. 20(8), 841–878 (2007). (MR2339841)

    MathSciNet  MATH  Google Scholar 

  4. Albert, J.P., Nguyen, N.V.: A variational characterization of 2-soliton profiles for the KdV equation (2021). Preprint arXiv:2101.10574

  5. Alejo, M.A., Muñoz, C., Vega, L.: The Gardner equation and the \(L^{2}\)-stability of the Nsoliton solution of the Korteweg-de Vries equation. Trans. Am. Math. Soc. 365(1), 195–212 (2013). (MR2984057)

    Article  MATH  Google Scholar 

  6. Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. London Ser. A 328, 153–183 (1972). (MR338584)

    Article  MathSciNet  Google Scholar 

  7. Bona, J.: On the stability theory of solitary waves. Proc. R. Soc. London Ser. A 344(1638), 363–374 (1975). (MR386438)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872). (MR3363411)

    MathSciNet  MATH  Google Scholar 

  9. Boussinesq, J.: Sur la théorie des eaux courantes. Mémoires à l’Acad. des Sci. Inst. Nat. France 23–24, 1–680 (1877)

    MATH  Google Scholar 

  10. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Comm. Math. Phys. 85(4), 549–561 (1982). (MR677997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company, Inc., New York-Toronto-London (1955). (MR0069338)

    MATH  Google Scholar 

  12. Deift, P., Trubowitz, E.: Inverse scattering on the line. Comm. Pure Appl. Math. 32(2), 121–251 (1979). (MR512420)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drury, S.W., Marshall, B.P.: Fourier restriction theorems for degenerate curves. Math. Proc. Cambridge Philos. Soc. 101(3), 541–553 (1987). (MR878901)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19(19), 1095–1097 (1967)

    Article  MATH  Google Scholar 

  15. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Korteweg-deVries equation and generalization. VI. Methods for exact solution. Comm. Pure Appl. Math. 27, 97–133 (1974). (MR336122)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garnett, J.B.: Bounded Analytic Functions, Graduate Texts in Mathematics, vol. 236, 1st edn. Springer, New York (2007). (MR2261424)

    Google Scholar 

  17. Gesztesy, F., Holden, H.: Soliton equations and their algebro-geometric solutions. Vol. I, Cambridge Studies in Advanced Mathematics, vol. 79, Cambridge University Press, Cambridge (2003). (1 + 1)-dimensional continuous models. MR1992536

  18. Gesztesy, F., Holden, H., Michor, J., Teschl, G.: Soliton equations and their algebrogeometric solutions. Vol. II, Cambridge Studies in Advanced Mathematics. vol. 114. Cambridge University Press, Cambridge (2008). (1 + 1)-dimensional discrete models. MR2446594

  19. Hirota, R.: Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    Article  MATH  Google Scholar 

  20. Hmidi, T., Keraani, S.: Blowup theory for the critical nonlinear Schrödinger equations revisited. Int. Math. Res. Not. 46, 2815–2828 (2005). (MR2180464)

    Article  MATH  Google Scholar 

  21. Kay, I., Moses, H. E.: Reflectionless transmission through dielectrics and scattering potentials, Div. Electromag. Res., Inst. Math. Sci., New York Univ. (1956). Res. Rep. No. EM-91. MR0090367

  22. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4(2), 323–347 (1991). (MR1086966)

    Article  MathSciNet  MATH  Google Scholar 

  23. Killip, R., Vişan, M.: Nonlinear Schrödinger equations at critical regularity. Evolution equations, pp. 325-437 (2013). MR3098643

  24. Killip, R., Vişan, M.: Orbital stability of KdV multisolitons in H-1. Comm. Math. Phys. 389(3), 1445–1473 (2022). (MR4381177)

    Article  MathSciNet  MATH  Google Scholar 

  25. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895). (MR3363408)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 21, 467–490 (1968). (MR235310)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lax, P.D.: Periodic solutions of the KdV equation. Comm. Pure Appl. Math. 28, 141–188 (1975). (MR369963)

    Article  MathSciNet  MATH  Google Scholar 

  28. Maddocks, J.H., Sachs, R.L.: On the stability of KdV multi-solitons. Comm. Pure Appl. Math. 46(6), 867–901 (1993). (MR1220540)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martel, Y., Merle, F.: Asymptotic stability of solitons of the subcritical gKdV equations revisited. Nonlinearity 18(1), 55–80 (2005). (MR2109467)

    Article  MathSciNet  MATH  Google Scholar 

  30. Martel, Y., Merle, F., Tsai, T.-P.: Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations. Comm. Math. Phys. 231(2), 347–373 (2002). (MR1946336)

    Article  MathSciNet  MATH  Google Scholar 

  31. Merle, F., Vega, L.: \(L^{2}\) stability of solitons for KdV equation. Int. Math. Res. Not. 13, 735–753 (2003). (MR1949297)

    Article  MATH  Google Scholar 

  32. Miura, R.M., Gardner, C.S., Kruskal, M.D.: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9, 1204–1209 (1968). (MR252826)

    Article  MathSciNet  MATH  Google Scholar 

  33. Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137(1), 82–203 (1998). (MR1627806)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steinig, J.: On some rules of Laguerre’s, and systems of equal sums of like powers. Rend. Mat. 4(1971), 629–644 (1972). (MR309867)

    MathSciNet  MATH  Google Scholar 

  35. Takayama, A.: Mathematical Economics, 2nd edn. Cambridge University Press, Cambridge (1985). (MR832684)

    MATH  Google Scholar 

  36. Tanaka, S.: On the N-tuple wave solutions of the Korteweg-de Vries equation. Publ. Res. Inst. Math. Sci. 8, 419–427 (1972). (MR0328386)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wadati, M., Toda, M.: The exact N-soliton solution of the Korteweg-de Vries equation. J. Phys. Soc. Japan 32, 1403–1411 (1972)

    Article  Google Scholar 

  38. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Comm. Pure Appl. Math. 39(1), 51–67 (1986). (MR820338)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons’’ in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  40. Zaharov, V.E., Faddeev, L.D.: The Korteweg-de Vries equation is a fully integrable Hamiltonian system. Funkcional. Anal. i Priložen. 5(4), 18–27 (1971). (MR0303132)

    MathSciNet  Google Scholar 

  41. Zakharov, V.E.: Kinetic equation for soliton. Soviet Phys. JETP 33(3), 538–541 (1971)

    Google Scholar 

Download references

Acknowledgements

I was supported in part by NSF grants DMS-1856755 and DMS-1763074. I would also like to thank my advisors, Rowan Killip and Monica Vişan, for their guidance, and Jaume de Dios Pont for pointing out the proof method from [34] for Lemma 3.2. Finally, I would like to thank the referee for their thoughtful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Laurens.

Additional information

Communicated by Enno Lenzmann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laurens, T. Multisolitons are the unique constrained minimizers of the KdV conserved quantities. Calc. Var. 62, 192 (2023). https://doi.org/10.1007/s00526-023-02534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02534-2

Navigation