Skip to main content
Log in

Scalar and mean curvature comparison via \(\mu \)-bubbles

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Following ideas of Gromov we prove scalar and mean curvature comparison results for Riemannian bands with lower scalar curvature bounds in dimension \(n\le 7\). The model spaces we use are warped products over scalar-flat manifolds with \(\log \)-concave warping functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Not applicable.

Code availability

Not applicable.

References

  1. Andersson, L., Cai, M., Galloway, G.J.: Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann. Henri Poincaré 9, 1–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ballmann, W.: Riccati Equation and Volume Estimates. http://people.mpim-bonn.mpg.de/hwbllmnn/archiv/Volume160309.pdf (2016)

  3. Bär, C., Hanke, B.: Boundary conditions for scalar curvature, Perspectives in scalar curvature 325–377 (2023)

  4. Bray, H., Brendle, S., Neves, A.: Rigidity of area-minimizing two-spheres in three-manifolds. Commun. Anal. Geom. 18(4), 821–830 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S., Marques, F., Neves, A.: Deformations of the hemisphere that increase scalar curvature. Invent. Math. 185, 175–197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breuning, P.: Immersions with bounded second fundamental form. J. Geom. Anal. 25(2), 1344–1386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, M.: Volume minimizing hypersurfaces in manifolds of nonnegative scalar curvature, Minimal Surfaces, Geometric Analysis and Symplectic Geometry (Baltimore, MD: 1999), Adv. Stud. Pure Math., vol. 34, Math. Soc., Tokyo, Japan, pp. 1–7 (2002)

  8. Carlotto, A., Li, C.: Constrained deformations of positive scalar curvature metrics, J. Differential. Geom., to appear, arXiv:1903.11772v2 (2019)

  9. Cecchini, S.: A long neck principle for Riemannian spin manifolds with positive scalar curvature. Geom. Funct. Anal. 30, 1183–1223 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cecchini, S., Schick, T.: Enlargeable metrics on nonspin manifolds. Proc. Am. Math. Soc. (2021)

  11. Cecchini, S., Zeidler, R.: Scalar and mean curvature comparison via the Dirac operator, Geom. Topol., to appear, arXiv:2103.06833v1 (2021)

  12. Chodosh, O., Li, C.: Generalized soap bubbles and the topology of manifolds with positive scalar curvature, arXiv: 2008.11888v3 (2020)

  13. Chodosh, O., Li, C., Liokumovich, Y.: Classifying sufficiently connected psc manifolds in 4 and 5 dimensions, Geom. Topol., to appear, arXiv:2105.07306v1 (2021)

  14. Ebert, J., Frenck, G.: The Gromov–Lawson–Chernysh surgery theorem. Bol. Soc. Mat. Mex. 27, 37 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curavature. Commun. Pure Appl. Math. 33, 199–211 (1980)

    Article  MATH  Google Scholar 

  16. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

    Book  MATH  Google Scholar 

  17. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–147 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gromov, M.: Positive curvature, macorscopic dimension, sprectral gaps and higher signatures. In: Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993), volume 132 of Progr. Math., Birkhäuser, 1–213 (1996)

  19. Gromov, M.: Metric inequalities with scalar curvature. Geom. Funct. Anal. 28, 645–726 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gromov, M.: Scalar curvature of manifolds with boundaries: natural questions and artificial constructions arXiv: 1811.04311v2 (2019)

  21. Gromov, M.: Four Lectures on Scalar Curvature, arXiv: 1908.10612v4 (2020)

  22. Gromov, M.: No metrics with positive scalar curvature on aspherical 5-manifolds, arXiv: 2009.05332v1 (2020)

  23. Gromov, M., Lawson, H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. (2) 111, 423–434 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gromov, M., Lawson, H.B.: Spin and scalar curvature in the presence of a fundamental group. I. Ann. Math. 111, 209–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gromov, M., Lawson, H.B.: Positive scalar curvature and the Dirac operator on a complete Riemannian manifold. Inst. Hautes Études Sci. Publ. Math. 58, 83–196 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose Inequality. J. Differ. Geom. 59, 353–437 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Iversen, B.: Cohomology of Sheaves. Springer, Universitext, Berlin (1986)

    Book  MATH  Google Scholar 

  28. Kazdan, J.L., Warner, F.W.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom. 10, 113–134 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C.: Dihedral rigidity of parabolic polyhedrons in hyperbolic spaces. SIGMA 16, 099 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Llarull, M.: Sharp estimates and the Dirac operator. Math. Ann. 310(1), 55–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lück, W.: A basic introduction to surgery theory, ICTP Lecture Notes Series 9, Band 1, of the school ”High-dimensional manifold theory” in Trieste, May/June: Abdus Salam International Centre for Theoretical Physics. Trieste 2002, 1–224 (2001)

  32. Milnor, J.W.: A procedure for killing the homotopy groups of differentiable manifolds. In: Proceedings of the Symposium in Pure Mathematics. 3 (Differential Geometry). Am. Math. Soc., pp. 39–55 (1961)

  33. Richard, T.: On the 2-systole of Streched Enough Positive Scalar Curvature metrics on \(S^2\times S^2\). SIGMA 16, 136 (2020)

    Google Scholar 

  34. Rosenberg, J.: Manifolds of positive scalar curvature: a progress report in Survey in Differential Geometry, vol. XI. Surv. Differ. Geom. International Press, Sommerville, MA, pp. 259–294 (2007)

  35. Rosenberg, J., Stolz, S.: Metrics of positive scalar curvature and connections with surgery. In: Surveys on surgery theory, vol. 2. vol. 149. Ann. of Math. Stud. Princeton Univ Press, Princeton, NJ, pp. 353–386 (2001)

  36. Schick, T.: A counterexample to the unstable Gromov–Lawson–Rosenberg conjecture. Topology 37(6), 1165–1168 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schick, T., Zenobi, V.F.: Positive scalar curvature due to the cokernel of the classifying map. SIGMA 16, 129 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Schoen, R., Yau, S.T.: On the structure of manifolds with positive scalar curvature. Manuscr. Math. 28(1–3), 159–183 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  39. Solomon, B., White, B.: A strong maximum principle for varifolds that are stationary with respect to even parametric elliptic functionals. Indiana Univ. Math. J. 38(3), 683–691 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. Stolz, S.: Concordance classes of positive scalar curvature metrics, Preprint. https://www3.nd.edu/~stolz/concordance.ps (1998)

  41. Tamanini, I.: Regularity results for almost minimal oriented hypersurfaces in \(\mathbb{R} ^n\). Quad. Dip. Mat. Univ. Lecce 1, 1–92 (1984)

    Google Scholar 

  42. Wall, C.T.C.: Finiteness conditions for CW-complexes. Ann. Math. 81, 56–69 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wall, C.T.C.: Geometrical connectivity I. J. Lond. Math. Soc. 3, 597–604 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wall, C.T.C.: Surgery on compact manifolds, No. 69. American Mathematical Society

  45. White, B.: Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals. Invent. Math. 88, 243–256 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  46. White, B.: The maximum principle for minimal varieties of arbitrary codimension. Commun. Anal. Geom. 18(3–4), 799–812 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Zeidler, R.: Width, largeness and index theory. SIGMA 16, 127 (2020)

    MathSciNet  MATH  Google Scholar 

  48. Zeidler, R.: Band width estimates via the Dirac operator. J. Differential Geom. 122(1), 155–183 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhou, X., Zhu, J.: Min-max theory for constant mean curvature hypersurfaces. Invent. Math. 218, 441–490 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhou, X., Zhu, J.: Existence of hypersurfaces with prescribed mean curvature I—generic min-max. Camb. J. Math. 8(2), 311–362 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhu, J.: Width estimate and doubly warped product. Trans. Am. Math. Soc. 374, 1497–1511 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is part of my doctoral dissertation project at Augsburg University. I am grateful to my advisor Bernhard Hanke for his continued support, Johannes Ebert for his expertise regarding Proposition 6.4 and Jan Metzger for answering my questions concerning maximum principles. I thank Rudolf Zeidler, Simone Cecchini and Georg Frenck for helpful comments. This work was supported by a doctoral grant from the German Academic Scholarship Foundation.

Funding

The author was supported by a doctoral grant from the German Academic Scholarship Foundation (Studienstiftung des deutschen Volkes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Räde.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Richard M. Schoen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Räde, D. Scalar and mean curvature comparison via \(\mu \)-bubbles. Calc. Var. 62, 187 (2023). https://doi.org/10.1007/s00526-023-02520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02520-8

Mathematics Subject Classification

Navigation