Skip to main content
Log in

Symmetric matrices, signed graphs, and nodal domain theorems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In 2001, Davies, Gladwell, Leydold, and Stadler proved discrete nodal domain theorems for eigenfunctions of generalized Laplacians, i.e., symmetric matrices with non-positive off-diagonal entries. In this paper, we establish nodal domain theorems for arbitrary symmetric matrices by exploring the induced signed graph structure. Our concepts of nodal domains for any function on a signed graph are switching invariant. When the induced signed graph is balanced, our definitions and upper bound estimates reduce to existing results for generalized Laplacians. Our approach provides a more conceptual understanding of Fiedler’s results on eigenfunctions of acyclic matrices. This new viewpoint leads to lower bound estimates for the number of strong nodal domains which improves previous results of Berkolaiko and Xu–Yau. We also prove a new type of lower bound estimates by a duality argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Atay, F.M., Liu, S.: Cheeger constants, structural balance, and spectral clustering analysis for signed graphs. Discrete. Math. 343, 26 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berkolaiko, G.: A lower bound for nodal count on discrete and metric graphs. Comm. Math. Phys. 278, 803–819 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bıyıkoğlu, T.: A discrete nodal domain theorem for trees. Linear Algebra Appl. 360, 197–205 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bıyıkoğlu, T., Leydold, J., Stadler, P. F.: Laplacian Eigenvectors of Graphs, Perron-Frobenius and Faber-Krahn Type Theorems. Lecture Notes in Mathematics 1915, Springer, (2007)

  5. Bıyıkoğlu, T., Leydold, J., Stadler, P.F.: Nodal domain theorems and bipartite subgraphs. Electron. J. Linear Algebra 13, 344–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bıyıkoğlu, T., Hordijk, W., Leydold, J., Pisanski, T., Stadler, P.F.: Graph Laplacians, nodal domains, and hyperplane arrangements. Linear Algebra Appl. 390, 155–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnefont, M., Golénia, S., Keller, M., Liu, S., Münch, F.: Magnetic-sparseness and Schrödinger operators on graphs. Ann. Henri Poincaré 21(5), 1489–1516 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonnington, C.P., Little, C.H.C.: The Foundations of Topological Graph Theory. Springer-Verlag, New York (1995)

    Book  MATH  Google Scholar 

  9. Chang, K.C., Shao, S., Zhang, D.: Nodal domains of eigenvectors for \(1\)-Laplacian on graphs. Adv. Math. 308, 529–574 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, S.-Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Colin de Verdière, Y.: Multiplicités des valeurs propres. Laplaciens discrets et laplaciens continus. [Multiplicities of eigenvalues. Discrete Laplacians and continuous Laplacians] Rend. Mat. Appl. 13, 433–460 (1993)

  12. Courant, R.: Ein allgemeiner Satzt zur Theorie der Eigenfunktionen selbsadjungierter Differentialausdrücke. Nachr. Ges. Wiss. Göttingen 1, 81–84 (1923)

    MATH  Google Scholar 

  13. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. I. Interscience Publishers Inc, New York, N.Y. (1953)

    MATH  Google Scholar 

  14. Cuesta, M., DeFigueiredo, D.G., Gossez, J.P.: A nodal domain property for the \(p\)-Laplacian. C. R. Acad. Sci. Paris Sér. I Math. 330(8), 669–673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davies, E.B., Gladwell, G.M.L., Leydold, J., Stadler, P.F.: Discrete nodal domain theorems. Linear Algebra Appl. 336, 51–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duval, A.M., Reiner, V.: Perron-Frobenius type results and discrete versions of nodal domain theorems. Linear Algebra Appl. 294, 259–268 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23, 298–305 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fiedler, M.: Eigenvectors of acyclic matrices. Czech. Math. J. 25, 607–618 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fiedler, M.: A property of eigenvectors of non-negative symmetric matrices and its applications to graph theory. Czech. Math. J. 25, 619–633 (1975)

    Article  MATH  Google Scholar 

  20. Friedman, J.: Some geometric aspects of graphs and their eigenfunctions. Duke Math. J. 69(3), 487–525 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gantmacher, F.P., Krein, M.G., Oscillation matrices and kernels and small vibrations of mechanical systems. Revised edition. In: Translation based on the: Russian original, p. 2002. AMS Chelsea Publishing, Providence, RI, Edited and with a preface by Alex Eremenko (1941)

  22. Gladwell, G.M.L., Zhu, H.: Courant’s nodal line theorem and its discrete counterparts. Quart. J. Mech. Appl. Math. 55(1), 1–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haemers, W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2(54), 143–146 (1953)

    MathSciNet  MATH  Google Scholar 

  25. Harary, F.: Structural duality. Behav. Sci. 2(4), 255–265 (1957)

    Article  MathSciNet  Google Scholar 

  26. Jost, J., Mulas, R., Zhang, D.: \(p\)-Laplace operators for oriented hypergraphs. Vietnam J. Math. 50, 323–358 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jost, J., Zhang, D.: Discrete-to-continuous extensions: piecewise multilinear extension, min-max theory and spectral theory. arXiv: 2106:04116, (2021)

  28. Keller, M., Schwarz, M.: Courant’s nodal domain theorem for positivity preserving forms. J. Spectr. Theory 10(1), 271–309 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lin, Y., Lippner, G., Mangoubi, D., Yau, S.-T.: Nodal geometry of graphs on surfaces. Discrete. Contin. Dyn. Syst. 28(3), 1291–1298 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, S., Münch, F., Peyerimhoff, N.: Curvature and higher order Buser inequalities for the graph connection Laplacian. SIAM J. Discrete Math. 33(1), 257–305 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lovász, L.: Discrete quantitative nodal theorem. Electron. J. Combin. 28, 6 (2021)

  32. Mohammadian, A.: Graphs and their real eigenvectors. Linear Multilinear Algebra 64(2), 136–142 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Powers, D.L.: Graph partitioning by eigenvectors. Linear Algebra Appl. 101, 121–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Roth, R.: On the eigenvectors belonging to the minimum eigenvalue of an essentially nonnegative symmetric matrix with bipartite graph. Linear Algebra Appl. 118, 1–10 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tudisco, F., Hein, M.: A nodal domain theorem and a higher-order Cheeger inequality for the graph \(p\)-Laplacian. J. Spectr. Theory 8(3), 883–908 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. van der Holst, H.: A short proof of the planarity characterization of Colin de Verdière. J. Combin. Theory Ser. B 65(2), 269–272 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  37. van der Holst, H.: Topological and spectral graph characterizations, Ph. D. Thesis, University of Amsterdam, 1996

  38. Xu, H., Yau, S.-T.: Nodal domain and eigenvalue multiplicity of graphs. J. Comb. 3(4), 609–622 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Zaslavsky, T.: Signed graphs. Discrete Appl. Math. 4(1), 47–74 (1982)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been presented in the conference, Mathematical concepts in the Science and Humanities (MPI MiS, May 16-25,2022), which is dedicated to Professor Jürgen Jost on the occasion of his 65th birthday. We are very grateful to Dong Zhang for discussions on discrete nodal domain theorems of signless Laplacians. We thank Ali Mohammadian for bringing his interesting work [32] to our attention after the submission of our first arXiv version. This work is supported by the National Key R and D Program of China 2020YFA0713100 and the National Natural Science Foundation of China (No. 12031017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyuan Ge.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, C., Liu, S. Symmetric matrices, signed graphs, and nodal domain theorems. Calc. Var. 62, 137 (2023). https://doi.org/10.1007/s00526-023-02479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02479-6

Mathematics Subject Classification

Navigation