Skip to main content
Log in

Existence of weak solutions for porous medium equation with a divergence type of drift term

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider degenerate porous medium equations with a divergence type of drift terms. We establish existence of nonnegative \(L^{q}\)-weak solutions (satisfying energy estimates or even further with moment and speed estimates in Wasserstein spaces), in case the drift term belongs to a sub-scaling (including scaling invariant) class depending on q and m caused by nonlinear structure of diffusion, which is a major difference compared to that of a linear case. It is noticeable that the classes of drift terms become wider, if the drift term is divergence-free. Similar conditions of gradients of drift terms are also provided to ensure the existence of such weak solutions. Uniqueness results follow under an additional condition on the gradients of the drift terms with the aid of methods developed in Wasserstein spaces. One of our main tools is so called the splitting method to construct a sequence of approximated solutions, which implies, by passing to the limit, the existence of weak solutions satisfying not only an energy inequality but also moment and speed estimates. One of crucial points in the construction is uniform Hölder continuity up to initial time for homogeneous porous medium equations, which seems to be of independent interest. As an application, we improve a regularity result for solutions of a repulsive Keller-Segel system of porous medium type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ambrosion, L., Gangbo, W.: Hamiltonian ODEs in the Wasserstein space of probability measures. Comm. Pure Appl. Math. 61(1), 18–53 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, (2008)

  3. Aronson, D.G.: Regularity properties of flows through porous media: a counterexample. SIAM J. Appl. Math. 19, 299–307 (1970)

    MathSciNet  MATH  Google Scholar 

  4. Aronson, D.G.: Regularity properties of flows through porous media: the interface. Arch. Ration. Mech. Anal. 37, 1–10 (1970)

    MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Coti Zelati, M.: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224(3), 1161–1204 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure enhanced dissipation and uniform-in-diffusivity exponential mixing for advection-diffusion by stochastic Navier-Stokes. Probab. Theory Relat. Fields 179(3–4), 777–834 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Bedrossian, J., He, S.: Inviscid damping and enhanced dissipation of the boundary layer for 2D Navier–Stokes linearized around Couette flow in a channel. Comm. Math. Phys. 379(1), 177–226 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Bedrossian, J., He, S.: Suppression of blow-up in Patlak–Keller–Segel via shear flows. SIAM J. Math. Anal. 49(6), 4722–4766 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Bian, S., Liu, J.: Dynamic and steady states for multi-dimensional Keller–Segel model with diffusion exponent \(m>0\). Comm. Math. Phys. 323(3), 1017–1070 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Blanchet, A., Carrillo, J., Laurençot, P.: Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calc. Var. Partial Diff. Equ. 35(2), 133–168 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Caffarelli, L.A., Friedman, A.: The one-phase Stefan problem and the porous medium diffusion equation: continuity of the solution in \(n\) space dimensions. Proc. Nat. Acad. Sci. U.S.A. 75(5), 2084 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L.A., Friedman, A.: Continuity of the density of a gas flow in a porous medium. Trans. Amer. Math. Soc. 252, 99–113 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Carrillo, J., Craig, K., Yao, Y.: Aggregation-diffusion equations: dynamics, asymptotics, and singular limits, Active particles. Vol. 2. Advances in theory, models, and applications, Birkhäuser/Springer, Cham, pp. 65–108, (2019)

  14. Calvez, V., Carrillo, J.A.: Volume effects in the Keller–Segel model: energy estimates preventing blow-up. J. Math. Pures Appl 86(2), 155–175 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Carrillo, J.A., Hittmeir, S., Volzone, B., Yao, Y.: Nonlinear aggregation-diffusion equations: radial symmetry and long time asymptotics. Invent. Math. 218(3), 889–977 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Carrillo, J., Jüngel, A., Markowich, P., Toscani, G., Unterreiter, A.: Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Mh. Math. 133, 1–82 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Chae, M., Kang, K., Lee, J.: Global existence and temporal decay in Keller–Segel models coupled to fluid equations. Comm. Partial Diff. Equ. 39(7), 1205–1235 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Chung, Y., Hwang, S., Kang, K., Kim, J.: Hölder continuity of Keller–Segel equations of porous medium type coupled to fluid equations. J. Diff. Equ. 263(4), 2157–2212 (2017)

    MATH  Google Scholar 

  19. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 168(2), 643–674 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Constantin, P., Ignatova, M.: On the Nernst–Planck–Navier–Stokes system. Arch. Ration. Mech. Anal. 232(3), 1379–1428 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Coti Zelati, M., Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation timescales and mixing rates. Comm. Pure Appl. Math. 73(6), 1205–1244 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Daskalopoulos, P., Kenig, C.E.: Degenerate diffusions, EMS Tracts in Mathematics, vol. 1, European Mathematical Society (EMS), Zürich, (2007). Initial value problems and local regularity theory

  23. DiBenedetto, E.: Continuity of weak solutions to a general porous medium equation. Indiana Univ. Math. J. 32(1), 83–118 (1983)

    MathSciNet  MATH  Google Scholar 

  24. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    MATH  Google Scholar 

  25. DiBenedetto, E., Friedman, A.: Hölder estimates for nonlinear degenerate parabolic systems. J. Reine Angew. Math. 357, 1–22 (1985)

    MathSciNet  MATH  Google Scholar 

  26. DiBenedetto, E., Friedman, A.: Addendum to: “Hölder estimates for nonlinear degenerate parabolic systems’’. J. Reine Angew. Math. 363, 217–220 (1985)

    MathSciNet  MATH  Google Scholar 

  27. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics, Springer, New York (2012)

    MATH  Google Scholar 

  28. DiPerna, R.J., Lions, P.-L.: On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. Math. 130(2), 321–366 (1989)

    MathSciNet  MATH  Google Scholar 

  29. Freitag, M.: Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete Contin. Dyn. Syst. 38(11), 5943–5961 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001)

    MATH  Google Scholar 

  31. Hashira, T., Ishida, S., Yokota, T.: Finite-time blow-up for quasilinear degenerate Keller–Segel systems of parabolic-parabolic type. J. Diff. Equ. 264(10), 6459–6485 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Herrero, M., Velázquez, J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24(4), 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Diff. Equ. 215(1), 52–107 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Hwang, S., Zhang, Y.P.: Continuity results for degenerate diffusion equations with \(L_{t}^{p} L_{x}^{q}\) drifts. Nonlinear Anal. 211, 112413 (2021)

    MATH  Google Scholar 

  35. Jäger, W., Luckhaus, S.: On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329, 819–824 (1992)

    MathSciNet  MATH  Google Scholar 

  36. Kang, K., Kim, H.K.: Existence of weak solutions in Wasserstein space for a chemotaxis model coupled to fluid equations. SIAM J. Math. Anal. 49(4), 2965–3004 (2017)

    MathSciNet  MATH  Google Scholar 

  37. Kang, K., Kim, H. K.: Local well-posedness in the Wasserstein space for a chemotaxis model coupled to incompressible fluid flows. Z. Angew. Math. Phys. 73(4), 138 (2022)

  38. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instaility. J. Theor. Biol. 26, 399–415 (1970)

    MATH  Google Scholar 

  39. Kim, H.K.: Hamiltonian systems and the calculus of differential forms on the Wasserstein space, Ph.D thesis, Georgia Institute of Technology (2009)

  40. Kim, I., Lei, H.: Degenerate diffusion with a drift potential: a viscosity solutions approach. Discrete Contin. Dyn. Syst. 27(2), 767–786 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Kim, I., Zhang, Y.P.: Regularity properties of degenerate diffusion equations with drifts. SIAM J. Math. Anal. 50(4), 4371–4406 (2018)

    MathSciNet  MATH  Google Scholar 

  42. Kim, I., Zhang, Y.P.: Porous medium equation with a drift: free boundary regularity. Arch. Rational. Mech. Anal. 242(2), 1177–1228 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Kiselev, A., Xu, X.: Suppression of chemotactic explosion by mixing. Arch. Ration. Mech. Anal. 222(2), 1077–1112 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Kowalczyk, R.: Preventing blow-up in a chemotaxis model. J. Math. Anal. Appl. 305(2), 566–588 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Ladyženskaja, O.A.: Uniqueness and smoothness of generalized solutions of Navier–Stokes equations. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 5, 169–185 (1967)

    MathSciNet  Google Scholar 

  46. Ladyženskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. Russian. Translated from the Russian by S, Smith (1968)

  47. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co. Inc, River Edge, NJ (1996)

    MATH  Google Scholar 

  48. Liu, J., Wang, J.: Global existence for Nernst–Planck–Navier–Stokes system in RN. Commun. Math. Sci. 18(6), 1743–1754 (2020)

    MathSciNet  MATH  Google Scholar 

  49. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill, New York (1937)

    MATH  Google Scholar 

  50. Osada, H.: Diffusion processes with generators of generalized divergence form. J. Math. Kyoto Univ. 27(4), 597–619 (1987)

    MathSciNet  MATH  Google Scholar 

  51. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959)

    MathSciNet  MATH  Google Scholar 

  52. Seregin, G., Silvestre, L., Šverák, V., Zlatoš, A.: On divergence-free drifts. J. Diff. Equ. 252(1), 505–540 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Serrin, J.: The Initial Value Problem for the Navier–Stokes Equations. University of Wisconsin Press, Madison (1963)

    MATH  Google Scholar 

  54. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  55. Silvestre, L., Vicol, V., Zlatoš, A.: On the loss of continuity for super-critical drift-diffusion equations. Arch. Ration. Mech. Anal. 207(3), 845–877 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Simon, J.: Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146, 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  57. Sugiyama, Y.: Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller–Segel systems. Diff. Integr. Equ. 19(8), 841–876 (2006)

    MathSciNet  MATH  Google Scholar 

  58. Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  59. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Oxford Lecture Series in Mathematics and its Applications, vol. 33. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  60. Villani, C.: Optimal transport, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, (2009)

  61. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Diff. Equ. 248(12), 2889–2905 (2010)

    MathSciNet  MATH  Google Scholar 

  62. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Comm. Partial Diff. Equ. 37(2), 319–351 (2012)

    MathSciNet  MATH  Google Scholar 

  63. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100(5), 748–767 (2013)

    MathSciNet  MATH  Google Scholar 

  64. Zhang, Y.P.: On a class of diffusion-aggregation equations. Discrete Contin. Dyn. Syst. 40(2), 907–932 (2020)

    MathSciNet  MATH  Google Scholar 

  65. Zlatoš, A.: Reaction–diffusion front speed enhancement by flows. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(5), 711–726 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for careful reading and helpful suggestions, which helped improve the clarity of the paper. S. Hwang’s work is partially supported by funding for the academic research program of Chungbuk National University in 2023 and NRF-2022R1F1A1073199. K. Kang’s work is partially supported by NRF-2019R1A2C1084685. H. Kim’s work is partially supported by NRF-2021R1F1A1048231 and NRF-2018R1D1A1B07049357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukjung Hwang.

Additional information

Communicated by V. Vicol.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Hölder continuity of homogeneous PME

Here we concern the homogeneous form of (1.1)

$$\begin{aligned} \partial _t u = \Delta u^m \ \text { in } \ Q_{T} \quad \text { for }\ m > 1, \end{aligned}$$
(A.1)

for \(Q_{T}:= {\mathbb {R}}^d \times (0, T]\), \(d\ge 2\), \(0<T<\infty \) with a nonnegative initial data \(u(x,0)=u_0 (x)\), \(x\in {\mathbb {R}}^d\). In [11, 12], Caffarelli and Friedman proved the modulus of continuity of u in the entire half space, if \(u_0 (x)\) is Hölder continuous. In [25, 26], DiBenedetto and Friedman determined Hölder exponent and constants quantitatively in the interior only depending upon the data. For \(d=1\), the Hölder exponent is known explicitly as \(\min \{1, \frac{1}{m-1}\}\) by Aronson [3, 4].

The Hölder continuity up to initial boundary is known, for exmaple, see [23, Section 6], as the Hölder exponent is depending upon the data and the modulus of continuity of the initial data. More specifically, for \(u_0 (x) \in C^{\alpha _0}({\mathbb {R}}^d)\), a bounded nonnegative weak solution of (A.1) is uniformly Hölder continuous up to the initial boundary with the exponent \(\alpha = \alpha (m, d,\alpha _0)\in (0,1)\) and the coefficient constant \(c = c (m,d,\Vert u\Vert _{L^{\infty }(\bar{Q}_{T})})\). For more systemetic arguments, we refer [24, 27] for parabolic p-Laplace equation and for both p-Laplace and porous medium equations.

Although the uniform Hölder continuity of a bounded nonnegative weak solution of (A.1) is well-known, the dependency of the Hölder exponent with respect to the initial Hölder exponent seems not specified from previous works mentioned above. Therefore, our aim is to more clearly demonstrate the relation of interior and initial Hölder regularity. More precisely, in Theorem 5.2, we clarify the dependencies of uniform Hölder exponent as the minimum of the intertior Hölder exponent and given Hölder exponent of the initial data, that is, \(\alpha = \min \{\alpha ^*, \alpha _0\}\) where \(\alpha ^*= \alpha ^*(m,d)\) is determined from the interior Hölder result in Theorem A.1 and \(\alpha _0 \in (0,1)\) is given from \(u_0 \in {\mathcal {C}}^{\alpha _0}({{\mathbb {R}}}^d)\). To prove Theorem 5.2, we mainly modify arguments, the boundary Hölder continuity of parabolic p-Laplace equations up to the initial time, by DiBenedetto in [24, Theorem III]. Also typical arguments, for example, in [18, 23, 25, 34], are used to prove local Hölder continuity of (A.1) quantitatively.

Let \(K_{r} (x_0)\) denote the \(d-\)dimensional cube centered at \(x_0 \in {\mathbb {R}}^d\) and wedge 2r for \(r>0\), that is,

$$\begin{aligned} K_{r}(x_0):= \{ x\in {\mathbb {R}}^d: \max _{1\le i \le d}|x^{i}-x_0^{i}| < r \}, \quad \text {for} \quad x=(x^1, \cdots , x^d). \end{aligned}$$

Besides let us denote two types of parabolic cyliners in \(Q_{T}\), for \(r>0\) and \(0< t_0 < t_0 + r^2 \le T\),

$$\begin{aligned} Q_r:= K_r (x_0) \times (t_0, t_0 +r^2 ] \quad \text {and} \quad Q_{r}^{0}:= K_r (x_0) \times [0, r^2]. \end{aligned}$$

First, we introduce the interior Hölder continuity results in [23, 25,26,27]. When the divergence form of drift term is combined, we refer results in [18, 34].

Theorem A.1

Let u be a weak solution of (A.1) in \(Q_{1} \subset Q_{T}\). Then there exist \(\alpha ^*= \alpha ^*(m,d) \in (0,1)\) and \(c = c (m, d, \Vert u\Vert _{L^{\infty }(Q_{1})})\), such that, u is uniformly Hölder continuous in \(Q_{1/2}\) with the exponent \(\alpha ^*\) and the coefficient c; that is, \( \Vert u\Vert _{{{\mathcal {C}}}^{\alpha ^*} (Q_{1/2})} \le c\).

The main theorem is the following: the Hölder continuity up to the initial time.

Theorem A.2

Let u be a weak solution of (A.1) in \(Q_{1}^{0}\subset Q_{T}\) with \(u_0 \in {{\mathcal {C}}}^{\alpha _0} (K_{1})\). Then there exists \({\tilde{\alpha }} = \min \{\alpha _0, \alpha ^*\}\) where \(\alpha ^*= \alpha ^*(m,d) \in (0,1)\) is given in Theorem A.1, and \(c = c (m, d, \Vert u\Vert _{L^{\infty }(Q_{1}^{0})})\), such that, u is uniformly Hölder continuous in \(Q_{1/2}^{0}\) with the exponent \(\alpha \) and the coefficient c; that is, \( \Vert u\Vert _{{{\mathcal {C}}}^{{\tilde{\alpha }}} (Q_{1/2}^0)} \le c\).

Theorem 5.2 is a direct consequence of Theorem A.1 and Theorem A.2.

The proof of Theorem 5.2: The global Hölder estimate up to \(t=0\), is given by the standard covering arguments based on both interior and boundary estimates in Theorem A.1 and Theorem A.2. \(\square \)

It remains to prove Theorem A.2. In the first subsection, we provide energy and logarithmic type estimates up to the initial time which are fundamental to carry further arguments in the following subsection to prove Theorem A.2.

1.1 Energy estimates

In this section, we apply the idea in [24, Section II.4.iii] and local energy estimates in [18, Proposition 4.1 & 4.2] to obtain energy estimates of (5.2) up to the initial time.

We consider a weak solution of (A.1) that takes the initial data \(u_0\) such that

$$\begin{aligned} \left( u_{h} (\cdot , 0) - u_0{}\right) _{\pm } \rightarrow 0, \quad \text {as } h\rightarrow 0 \quad \text {in } L^2_{{{\,\textrm{loc}\,}}} \text { sense,} \end{aligned}$$
(A.2)

where \(u_{h}\) indicates the Stekelov average that

$$\begin{aligned} u_{h} (x, t) = \frac{1}{h} \int _{t}^{t+h} u(x, \tau ) \,d\tau , \quad \text {for all}\quad 0\le t \le T-h, \end{aligned}$$

which converges to u as \(h\rightarrow 0\).

For some \(k>0\), let us denote \((u - k)_{+} = \max \{ u-k, 0\}\) and \( (u - k)_{-} = \max \{k-u, 0\}\).

Proposition A.3

Let u be a nonnegative bounded weak solution of (A.1). For \(r>0\), \(0<t<T\), suppose that \(\zeta \) is a smooth cut-off function in \(K_{r}(x_0)\times [0, t]\), which is \(0 \le \zeta \le 1\), independent of t, and vanishing on the lateral boundary \(\partial K_{r}(x_0)\). Let \(\mu _{\pm }\) be positive constants such that

$$\begin{aligned} \mu _{+} \ge \mathop {\mathrm{ess\,sup}}\limits _{K_{r}(x_0)\times [0, t]} u \quad \text {and} \quad \mu _{-} \le \mathop {\mathrm{ess\,inf}}\limits _{K_{r}(x_0)\times [0, t]} u. \end{aligned}$$

Moreover, for every level \(k > 0\), suppose that

$$\begin{aligned} {\left\{ \begin{array}{ll} \mu _{+} - k > \mathop {\mathrm{ess\,sup}}\nolimits _{K_{r} (x_0)} u_0, &{} \quad \text {for}\quad (u - \mu _{+} - k)_{+}, \\ \mu _{-} + k < \mathop {\mathrm{ess\,inf}}\nolimits _{K_{r} (x_0)} u_0, &{} \quad \text {for}\quad (u - \mu _{-} + k)_{-}. \end{array}\right. } \end{aligned}$$
(A.3)

Then the following estimate holds

$$\begin{aligned} \begin{aligned}&\sup _{0 \le \tau \le t} \int _{K_r (x_0)} \left( u (\cdot , \tau ) - \mu _{\pm } \pm k\right) _{\pm }^{2} \zeta ^2 \,dx + m \int _{0}^{t} \int _{K_{r}(x_0)} u^{m-1} \left| \nabla \left( u - \mu _{\pm } \pm k\right) _{\pm }\right| ^2 \zeta ^2 \,dx\,d\tau \\&\quad \le 16m \int _{0}^{t} \int _{K_{r}(x_0)} u^{m-1} \left( u - \mu _{\pm } \pm k\right) _{\pm }^{2} |\nabla \zeta |^2 \,dx\,d\tau . \end{aligned} \end{aligned}$$
(A.4)

Moreover, it holds that, for any \(\tau \in (0, t]\),

$$\begin{aligned} \begin{aligned}&\int _{K_r (x_0)} \Psi _{\pm }^{2}(u (\cdot , \tau )) \zeta ^2 \,dx + 2m \int _{0}^{t} \int _{K_{r}(x_0)} u^{m-1} |\nabla u|^2 \Psi _{\pm } \left| \Psi '_{\pm }(u)\right| ^2 \zeta ^2 \,dx\,d\tau \\&\quad \le 16 m \int _{0}^{t} \int _{K_{r}(x_0)} u^{m-1} \Psi _{\pm }^{2}(u) |\nabla \zeta |^2 \,dx\,d\tau , \end{aligned} \end{aligned}$$
(A.5)

where, for \(\delta \in (0, 1)\),

$$\begin{aligned} \Psi _{\pm } (u) = \ln ^{+} \left[ \frac{k}{(1+\delta )k - \left( u - \mu _{\pm } \pm k\right) _{\pm }}\right] . \end{aligned}$$

Proof

A weak solution formulation of (A.1) rephrased in terms of Stekelov averages is given

$$\begin{aligned} \int _{0}^{t} \int _{K_{r}(x_0)} \left[ \partial _t u_h \varphi + \nabla u_h^{m} \nabla \varphi \right] \,dx\,dt = 0, \end{aligned}$$

for all \(0<t<T-h\) and for all \(\varphi \in W_{o}^{1,p} (\Omega ) \cap L^{\infty }_{x}(\Omega )\), \(\varphi \ge 0\) (see [24, Section II.2.i]).

To obtain (A.4), we test \(\varphi = \pm 2\left( u_{h} - \mu _{\pm } \pm k\right) _{\pm } \zeta ^2\). Then

$$\begin{aligned} \begin{aligned} \int _{0}^{t} \int _{K_{r}(x_0)} \partial _t u_h \varphi \,dx\,dt&= \int _{0}^{t} \int _{K_{r}(x_0)} \partial _t \left[ \left( u_{h} - \mu _{\pm } \pm k\right) _{\pm } \zeta \right] ^2 \,dx\,dt \\&= \int _{K_{r}(x_0)\times \{t\}} \left( u_{h} - \mu _{\pm } \pm k\right) _{\pm }^2 \zeta ^2 \,dx\,dt \\&\quad - \int _{K_{r}(x_0)} \left( u_{h} (\cdot , 0) - \mu _{\pm } \pm k\right) _{\pm }^2 \zeta ^2 \,dx\,dt, \end{aligned} \end{aligned}$$

in which the second term vanishes as \(h \rightarrow 0\) because of (A.2) and (A.3). We skip the computation of \(\iint \nabla u_h^{m} \nabla \varphi \,dx\,dt\) because it is similar to [18, Proposition 4.1]. The combination of above estimates yields (A.4).

Now to obtain (A.5), we note that, from the definition of \(\Psi _{\pm } (u)\), it follows that

$$\begin{aligned} \Psi _{\pm }(u) = 0 \quad \text {whenever } (u- \mu _{\pm }\pm k)_{\pm } = 0. \end{aligned}$$

Then (A.3) provides that

$$\begin{aligned} \int _{K_{r} (x_0)} \Psi ^{2} (u_h) (x, 0) \zeta ^2 \,dx \rightarrow 0, \quad \text {as } h\rightarrow 0. \end{aligned}$$

Therefore, (A.5) follows by carrying almost the same computations as in [18, Proposition 4.2]. \(\square \)

1.2 Proof of Theorem A.2.

Here, we prove Theorem A.2 by modifying methodologies in [24, Section III]. Because of translation invariant property, we assume \(x_0 = 0\) without loss of generality. First, we construct a parabolic cyliner

$$\begin{aligned} Q_{2R, R^{2-\epsilon }} = K_{2R}(0)\times [0, R^{2-\epsilon }], \quad \text {for}\quad R>0, \end{aligned}$$
(A.6)

where \(\epsilon = \epsilon (m)\) is a positive number determined later. Moreover, let us set

$$\begin{aligned} \mu _{+}:= \mathop {\mathrm{ess\,sup}}\limits _{Q_{2R, R^{2-\epsilon }}} u, \qquad \mu _{-}:= \mathop {\mathrm{ess\,inf}}\limits _{Q_{2R, R^{2-\epsilon }}} u, \quad \text {and} \quad \omega := \mathop {\mathrm{ess\,osc}}\limits _{Q_{2R, R^{2-\epsilon }}} u = \mu _{+} - \mu _{-}. \end{aligned}$$
(A.7)

Now we construct the intrinsic parabolic cylinder such that

$$\begin{aligned} Q_{R, a_0 R^{2}}:= K_{R}(0) \times [0, a_0 R^2], \quad \text {where} \quad \frac{1}{a_0}=\left( \frac{\omega }{4}\right) ^{m-1}. \end{aligned}$$

These parabolic boxes are lying on the bottom of \({\mathbb {R}}^d\times {\mathbb {R}}_{+}\).

We establish the decay of oscillation in the next proposition, which is similar to [24, Proposition III.11.1].

Proposition A.4

There exist constants \(\epsilon _0 = \epsilon _{0} (m,d,\epsilon ) \in (0,1)\) for \(\epsilon \) given in (A.6), \( \eta _1 = \eta _1 (m,d)\in (0,1)\), and \( \eta _2 = \eta _2 (m,d) \in (0,1)\) which satisfy the following. Let us construct the sequences with \(R_0 = R\) and \(\omega _0 = \omega \):

$$\begin{aligned} R_n = {\eta _2}^{n} R, \quad \omega _{n+1} = \max \{ \eta _1 \omega _n, \, 4 R_n^{\epsilon _0}\}, \quad n=1,2,\ldots . \end{aligned}$$
(A.8)

Also, construct the family of intrinsic parabolic cylinders:

$$\begin{aligned} Q_n:= K_{R_n} \times [0, \left( \frac{\omega _{n}}{4}\right) ^{1-m} R_n^2], \quad n=1,2,\ldots . \end{aligned}$$

that satisfies \(Q_{n+1} \subset Q_{n}\). Then the following holds: for all \(n=0,1,2,\ldots \),

$$\begin{aligned} \mathop {\mathrm{ess\,osc}}\limits _{Q_n} u \le \max \{\omega _n, \, 2 \mathop {\mathrm{ess\,osc}}\limits _{K_{R_n}} u_0\}. \end{aligned}$$
(A.9)

Proof

For any \(R>0\), let us start from \(Q_0:= Q_{2R, R^{2-\epsilon }}\) in (A.6) where \(\epsilon \in (0,1)\) to be determined later. For \(\mu _{\pm }\) and \(\omega \) given in (A.7), we construct intrinsically scaled parabolic cylinders

$$\begin{aligned} Q_{R}^{\omega }:= K_{R}(0) \times \left[ 0, \left( \frac{\omega }{4}\right) ^{1-m} R^2\right] . \end{aligned}$$

Then there are two cases: either

$$\begin{aligned} Q_{R}^{\omega } \subset Q_0 \quad \text {which gives} \quad \omega > 4 R^{\frac{\epsilon }{m-1}}, \end{aligned}$$
(A.10)

or

$$\begin{aligned} Q_0 \subset Q_{R}^{\omega } \quad \text {which gives} \quad \omega \le 4 R^{\frac{\epsilon }{m-1}}. \end{aligned}$$
(A.11)

If (A.11) holds, then (A.8) follows directly with \(\epsilon _0 = \frac{\epsilon }{m-1}\).

Now let us assume (A.10) and set

$$\begin{aligned} \mu ^{+}_{0} = \mathop {\mathrm{ess\,sup}}\limits _{K_R} u_0, \quad \mu ^{-}_{0}= \mathop {\mathrm{ess\,inf}}\limits _{K_R} u_0, \quad \omega _0 = \mathop {\mathrm{ess\,osc}}\limits _{K_R} u_0 = \mu ^{+}_{0} - \mu ^{-}_{0}. \end{aligned}$$

Then there are two inequalities to cosider:

$$\begin{aligned} \mu ^{+} - \frac{\omega }{4} \le \mu ^{+}_{0} \quad \text {and} \quad \mu ^{-} + \frac{\omega }{4} \ge \mu ^{-}_{0}. \end{aligned}$$
(A.12)

If both inequalities in (A.12) hold, then the subtraction of the second from the first gives

$$\begin{aligned} \mathop {\mathrm{ess\,osc}}\limits _{Q_{R}^{\omega }} u \le 2 \mathop {\mathrm{ess\,osc}}\limits _{K_R} u_0, \end{aligned}$$

which holds (A.9) and there is nothing to prove.

If the second inequality in (A.12) is violated, then we choose \(k =\frac{\omega }{4}\) and it gives

$$\begin{aligned} \mu ^{-} + k < \mu _{0}^{-}, \end{aligned}$$

which satisfies (A.3). Therefore, we have energy estimates (A.4) and (A.5) for \( (u - \mu ^{-} - k)_{-}\). With these estimates, we are able to carry the quantitative method such as the expansion of positivity and DeGiorgi iteration as in [18]. We obtain that there exists \(\delta _1 = \delta _1 (m,d) \in (0,1)\) such that

$$\begin{aligned} \mathop {\mathrm{ess\,inf}}\limits _{Q_{R/8}^{\omega /4}}u \ge \mu _{-} + \delta _1 \omega , \quad \text {for} \quad Q_{R/8}^{\omega /4}:= K_{R/8}\times \left[ 0, \left( \frac{\omega }{4}\right) ^{1-m}\left( \frac{R}{8}\right) ^2\right] . \end{aligned}$$

If the first inequality in (A.12) fails, then we have (A.4) and (A.5) for \((u - \mu ^{+}+k)_{+}\) because (A.3) holds \(k=\frac{\omega }{4}\). Then again the same arguments in [18] deduce that there exists \(\delta _2 = \delta _2 (m,d) \in (0,1)\) such that

$$\begin{aligned} \mathop {\mathrm{ess\,sup}}\limits _{Q_{R/8}^{\omega /4}}u \le \mu _{+} - \delta _2 \omega . \end{aligned}$$

From above, when (A.12) fails, we choose \( \eta _1 = \max \{ 1 - \delta _1, \ 1-\delta _2\}\) to obtain

$$\begin{aligned} \mathop {\mathrm{ess\,osc}}\limits _{Q_{R/8}^{\omega /4}} u \le \eta _1 \omega , \end{aligned}$$

which parallels to Lemma III.11.1 in [24].

Finally, we construct nested and shrinking family of parabolic cylinders. First, let us set

$$\begin{aligned} {\eta _2} \le \frac{1}{8} \, {\eta _1}^{\frac{m-1}{2}}, \quad \text {for} \quad {\eta _1} = \max \{ 1 - \delta _1, \ 1-\delta _2\} \in (0,1). \end{aligned}$$
(A.13)

This provides

$$\begin{aligned} Q_1:=Q_{{\eta _2} R}^{{\eta _1} \omega / 4} \subset Q_{R/8}^{\omega /4} \subset Q_{R}^{\omega /4} \subset Q_{R}^{\omega /4}=: Q_0. \end{aligned}$$

Then by repeating the same iteration, we complete the proof. \(\square \)

From Proposition A.4, we derive the Hölder continuity in the next lemma.

Lemma A.5

Let u be a nonnegative weak solution of (A.1) with \(u_0 \in {{\mathcal {C}}}^{\alpha _0}({\mathbb {R}}^d)\). Then there exist \(\epsilon _0 = \epsilon _0 (m) \in (0,1)\), \(\alpha _i = \alpha _i (m,d) \in (0,1)\) for \(i=1,2\), and \(c= c(m,d) >1\), such that, for any \(R>0\) and \(0< r \le R\), it holds

$$\begin{aligned} \mathop {\mathrm{ess\,osc}}\limits _{Q_r^0} u \le c \left( \omega + R^{\epsilon _0} + R^{\alpha _0}\right) \left( \frac{r + (\omega /4)^{\frac{m-1}{2}} r}{R}\right) ^{{\tilde{\alpha }}}, \end{aligned}$$

for \({\tilde{\alpha }} = \min \{\alpha _0, \alpha _1, \alpha _2, \epsilon _0/2 \}\).

Proof

For \({\eta _1}, {\eta _2} \in (0,1)\) given in Proposition A.4, let us set \(R_n = {\eta _2}^n R\) and \(\omega _n = {\eta _1}^n \omega \). For any \(0 < \rho \le R\), there exist nonnegative integers k and l such that

$$\begin{aligned} R_{k+1} < r \le R_{k} \end{aligned}$$
(A.14)

and

$$\begin{aligned} \left( \frac{\omega _{l+1}}{4}\right) ^{1-m}R_{l+1}^{2} < r^2 \le \left( \frac{\omega _{l}}{4}\right) ^{1-m}R_{l}^{2}, \end{aligned}$$
(A.15)

which means \(Q_{r}\) belongs to either \(Q_k\) or \(Q_l\). Therefore, by Proposition A.4, it implies

$$\begin{aligned} \mathop {\mathrm{ess\,osc}}\limits _{Q_r} u \le \max \{ \omega _{k}, \ \omega _{l}\}, \end{aligned}$$

and, moreover, it gives (because \(\mathop {\mathrm{ess\,osc}}\nolimits _{K_{R_n}} u_0 \le R_n^{\alpha _0}\) by the Hölder continuity of \(u_0\))

$$\begin{aligned} \omega _{n+1} \le {\eta _1} \omega _n + 4R_n^{\epsilon _0} + 2 R_n^{\alpha _0}. \end{aligned}$$

First, we deduce from the iteration that

$$\begin{aligned} \omega _n \le {\eta _1}^n \omega + 4 \left( \sum _{i=1}^{n}{\eta _1}^{n-i}{\eta _2}^{\epsilon _0 (i-1)}\right) R^{\epsilon _0} + 2\left( \sum _{i=1}^{n}{\eta _1}^{n-i}{\eta _2}^{\alpha _0 (i-1)}\right) R^{\alpha _0} = I_{n} + II_{n} + III_{n}. \end{aligned}$$

Then we consider two cases separately.

If (A.14) holds, then we deduce the following, from the LHS of (A.14),

$$\begin{aligned} {\eta _2}^{k+1}< \frac{r}{R} \quad \Longrightarrow \quad k+1 < \log _{{\eta _2}}r/R = \log _{{\eta _1}} (r/R)^{\alpha _1}, \quad \text {for} \quad \alpha _1 = \left| \log _{{\eta _2}} {\eta _1} \right| . \end{aligned}$$

Therefore, we easily obtain

$$\begin{aligned} {\eta _1}^{k} < {\eta _1}^{-1}\left( \frac{r}{R}\right) ^{\alpha _1} \quad \Longrightarrow \quad I_{k} \le {\eta _1}^{-1}\omega \left( \frac{r}{R}\right) ^{\alpha _1}. \end{aligned}$$
(A.16)

Recalling (A.13), without loss of generality, let us fix

$$\begin{aligned} {\eta _2} = {\eta _1}^{m-1} < \frac{1}{8}{\eta _1}^{\frac{m-1}{2}} \quad \Longrightarrow \quad {\eta _1} = {\eta _2}^{\frac{1}{m-1}}. \end{aligned}$$
(A.17)

Then now we observe that

$$\begin{aligned} II_{k}= & {} 4 \left( \sum _{i=1}^{k}{\eta _1}^{k-i}{\eta _2}^{\epsilon _0 (i-1)}\right) R^{\epsilon _0} = 4 \left( \sum _{i=1}^{k}{\eta _2}^{\frac{1}{m-1}(k-i)}{\eta _2}^{\epsilon _0 (i-1)}\right) R^{\epsilon _0} \\\le & {} 4 \left( \sum _{i=1}^{k}{\eta _2}^{\epsilon _0 (k-1)}\right) R^{\epsilon _0}, \end{aligned}$$

by choosing \(\epsilon _0 = \min \{ 1/2, \ 1/(m-1) \}\). Therefore, it yields

$$\begin{aligned} II_{k} \le 4 {\eta _2}^{-\epsilon _0} k ({\eta _2}^{k} R )^{\epsilon _0} \le 4 {\eta _2}^{-\epsilon _0} \left( \frac{R}{r}\right) ^{\epsilon _0 /2} \left( \frac{r}{{\eta _2}}\right) ^{\epsilon _0}= 4{\eta _2}^{-2\epsilon _0} R^{\epsilon _0} \left( \frac{r}{R}\right) ^{\epsilon _0 / 2}, \end{aligned}$$
(A.18)

by (A.14) and by choosing \(k \in {\mathbb {N}}\) such that

$$\begin{aligned} k < {\eta _2}^{-k \epsilon _0 /2} \le \left( \frac{R}{r}\right) ^{\epsilon _0 /2}. \end{aligned}$$
(A.19)

The second inequality of (A.19) comes form the RHS of (A.14), and the first inequality of (A.19) is true in general by choosing \(\frac{1}{{\eta _2}}\) large enough. Let us fix

$$\begin{aligned} {\tilde{\alpha }} = \min \{ \alpha _0, \alpha _1, \epsilon _0 / 2\}, \end{aligned}$$
(A.20)

and then it follows

$$\begin{aligned} \begin{aligned} III_{k}&= 2\left( \sum _{i=1}^{k}{\eta _1}^{k-i}{\eta _2}^{\alpha _0 (i-1)}\right) R^{\alpha _0} \le 2\left( \sum _{i=1}^{k}{\eta _2}^{\epsilon _0 (k-i)}{\eta _2}^{\alpha _0 (i-1)}\right) R^{\alpha _0} \\&\le 2 {\eta _2}^{-\epsilon _0} \left( \sum _{i=1}^{k}{\eta _2}^{(\epsilon _0 -{\tilde{\alpha }}) (k-i +1)}\right) ({\eta _2}^{k} R)^{{\tilde{\alpha }}} < \frac{2 {\eta _2}^{-2\epsilon _0}}{{\eta _2}^{-\epsilon _0 /2} - 1} R^{\alpha _0} \left( \frac{r}{R}\right) ^{{\tilde{\alpha }}}, \end{aligned} \end{aligned}$$
(A.21)

because, by the LHS of (A.14),

$$\begin{aligned} \sum _{i=1}^{k}{\eta _2}^{(\epsilon _0 -{\tilde{\alpha }}) (k-i +1)}< \frac{1}{{\eta _2}^{\alpha _0 - \epsilon _0} - 1} \le \frac{1}{{\eta _2}^{- \epsilon _0 /2} - 1}, \quad \text {and}\quad {\eta _2}^{-{\tilde{\alpha }}} < {\eta _2}^{-\epsilon _0}. \end{aligned}$$

Finally, the summation of (A.16), (A.18), (A.21), and the choice of \(\alpha _0\) in (A.20) imply that

$$\begin{aligned} \omega _{l}\le & {} {\eta _1}^{-1}\omega \left( \frac{r}{R}\right) ^{\alpha _1} + 4{\eta _2}^{-2\epsilon _0} R^{\epsilon _0} \left( \frac{r}{R}\right) ^{\epsilon _0 / 2} + \frac{2 {\eta _2}^{-2\epsilon _0}}{{\eta _2}^{-\epsilon _0 /2} - 1} R^{\alpha _0} \left( \frac{r}{R}\right) ^{{\tilde{\alpha }}} \\\le & {} c \left( \omega + R^{\epsilon _0} + R^{\alpha _0}\right) \left( \frac{r}{R}\right) ^{{\tilde{\alpha }}}. \end{aligned}$$

If (A.15) hold, then let us rewrite (A.15) in the following:

$$\begin{aligned} \left( {\eta _1}^{1-m} {\eta _2}^2 \right) ^{l+1} R^2 < \left( \frac{\omega }{4}\right) ^{m-1} r^2 \ (=:\tilde{r}^2) \le \left( {\eta _1}^{1-m} {\eta _2}^2 \right) ^{l} R^2. \end{aligned}$$
(A.22)

Let us set

$$\begin{aligned} \tilde{{\eta _2}} = {\eta _1}^{\frac{1-m}{2}}{\eta _2}, \quad \text {and} \quad \tilde{r}^2 = \left( \frac{\omega }{4}\right) ^{m-1} r^2. \end{aligned}$$

Then (A.22) is now simplified as

$$\begin{aligned} \tilde{{\eta _2}}^{l+1} R < \tilde{r} \le \tilde{{\eta _2}}^l R. \end{aligned}$$

Without loss of generality, assume that \(\tilde{r} \le R\). Moreover, the choice of \({\eta _2}\) as in (A.17) gives

$$\begin{aligned} {\eta _1}^{1-m} {\eta _2}^{2} = {\eta _1}^{m-1} = {\eta _2} \quad \text {and} \quad \tilde{{\eta _2}} = {\eta _2}^{3/2}. \end{aligned}$$

Therefore, the first inequality in (A.22) yields

$$\begin{aligned} l+1 < \log _{{\eta _1}} \left( \tilde{r}/R\right) ^{\alpha _2} \quad \Longrightarrow \quad I_l \le {\eta _1}^{-1} \omega \left( \frac{\tilde{r}}{R}\right) ^{\alpha _2}, \quad \text {for}\quad \alpha _2 = \left| \log _{\tilde{{\eta _2}}} {\eta _1} \right| . \end{aligned}$$

Then we carry similar analysis for \(II_l\) and \(III_l\) as handling \(II_k\) in (A.18) and \(III_k\) as in (A.21) with \({\tilde{\alpha }} = \min \{\alpha _0, \alpha _2, \frac{\epsilon _0}{2}\}\) to have

$$\begin{aligned} \omega _{l}\le & {} {\eta _1}^{-1} \omega \left( \frac{\tilde{r}}{R}\right) ^{\alpha _2}+ 4 \tilde{{\eta _2}}^{-2\epsilon _0} R^{\epsilon _0}\left( \frac{\tilde{r}}{R}\right) ^{\epsilon _0 /2}+ \frac{2 {\eta _2}^{-2\epsilon _0}}{{\eta _2}^{-\epsilon _0 /2} - 1} R^{\alpha _0}\left( \frac{\tilde{r}}{R} \right) ^{{\tilde{\alpha }}}\\\le & {} c \left( \omega + R^{\epsilon _0} + R^{\alpha _0}\right) \left( \frac{\tilde{r}}{R} \right) ^{{\tilde{\alpha }}}. \end{aligned}$$

Therefore, we complete the proof by choosing \({\tilde{\alpha }} = \min \{\alpha _0, \alpha _1, \alpha _2, \frac{\epsilon _0}{2} \}\) and by combining all estimates above. \(\square \)

Once we have Lemma A.5, Theorem A.2 follows from standard computations (refer [18, 24, 34]).

Appendix B Figure supplements

  • Figures 11 and 12 (Theorem 2.9for case \(1<m\le 2\), \(q>1\)): Refer Remark 2.10 (iii) and Fig. 6. As d increases, the point \({\textbf {b}}\) approaches closer to the origin and \({\textbf {A}}\) may locate on the right hand side of \({\textbf {B}}\) and \({\textbf {b}}\).

Fig. 11
figure 11

\(\max \{2,\frac{2m}{(2m-1)(m-1)}\} < d \le \frac{2m}{m-1}\)

Fig. 12
figure 12

\( d > \frac{2m}{m-1}\)

  • Figure 13 (Theorem 2.9for case \(m>2\), \(q\ge m-1\)): Refer Remark 2.10 (iv) and Fig. 7.

Fig. 13
figure 13

\(m>2\), \(q\ge m-1\), \(d >\frac{2m}{m-1}\)

Fig. 14
figure 14

\(m>2 \), \(q> \frac{m}{2}\), \(d>2\)

  • Figure 14 (Theorem 2.11for case \(m>2\), \(q > \frac{m}{2}\)): Refer Remark 2.12 (iii) and Fig. 8.

    When \(d=2\), the line \(\overline{{\textbf {CH}}}\) is excluded from the region \({\mathcal {R}}({\textbf {ABCHI}})\).

  • Figures  15 and 16 (Theorem 2.13for case \(1<m\le 2\), \(q>1\)): Refer Remark 2.14 (ii) and Fig. 9.

Fig. 15
figure 15

\(\max \{ 2, \frac{2m}{(2m-1)(m-1)}\} < d \le \frac{2m}{m-1}\)

Fig. 16
figure 16

\(d > \frac{2m}{m-1}\)

  • Figures 17 and 18 (Theorem 2.13for case \(m>2\), \(q\ge \frac{m}{2}\)): Refer Remark 2.14 (ii) and Fig. 9. We note that \(\frac{2m}{(2m-1)(m-1)} < 2\) for \(m>2\), thus it is enough to consider two cases.

Fig. 17
figure 17

\(m>2 \), \(q\ge \frac{m}{2}\), \(2< d \le \frac{2m}{m-1}\)

Fig. 18
figure 18

\( m > 2\), \(q \ge \frac{m}{2}\), \(d > \frac{2\,m}{m-1}\)

Fig. 19
figure 19

\(m> 2\), \(q \ge \frac{m}{2}\)

  • Figure 19 (Theorem 2.15and 2.16for case \(m>2\), \(q> \frac{m}{2}\)): Refer Remark 2.17 (ii) and Fig. 10.

1.1 Embedding

The following figures illustrate strategies of applying embedding arguments in the temporal varaiable in the second part os Theorem 2.9, 2.13, and 2.16. Unfortunately, embedding arguments in spatial variables do not work because \({{\mathbb {R}}}^d\) is unbounded. If spatial embedding arguments are applicable, then, for example in Fig. 20, it gives a way to include the region \({\mathcal {R}}({\textbf {aAF}})\) by searching \((q_1^*, q_2)\) in \({\mathcal {R}}({\textbf {ABCDEF}})\) by decreasing \(q_1^*< q_1\) for some \(q^*\in (1, q)\). We are preparing a parallel paper constructing the existence results of (1.1) in \(\Omega \times (0, T]\) for \(\Omega \) bounded in \({{\mathbb {R}}}^{d}\).

  • Figure 20 (Theorem 2.9(ii) for case \(1<m\le 2\), \(q>1\)): Starting a pair \((q_1, q_2)\) in \({\mathcal {R}}({\textbf {bCB}})\), one can decrease \(q_2\) to \(q_{2}^*\) until \((q_1, q_{2}^{*})\) hits the line \(\overline{{\textbf {BC}}}\) or any pair belonging \({\mathcal {R}}({\textbf {ABCDEF}})\). Then there exists \(q^*\in (1, q)\) in which \((q_1, q_{2}^{*})\) lies on \({\mathcal {S}}_{m,q^*}^{(q_1, q_2^*)}\). Then we apply the existence results in Theorem 2.9\(\textit{(i)}\) for \(1 < p \le {\lambda _{q^*}}\). When \( \max \{2,\frac{2\,m}{(2\,m-1)(m-1)}\} < d \le \frac{2\,m}{m-1}\) or \(d > \frac{2\,m}{m-1}\), we repeat the same strategy with Fig. 11, 12, respectively.

Fig. 20
figure 20

\(1<m\le 2\), \(q>1\), \(2<d \le \max \{2, \frac{2m}{(2m-1)(m-1)}\}\)

  • Figure 21 (Theorem 2.9(ii) for case \(m > 2\), \(q\ge m-1\): Refer Fig. 7. The same strategy works to Fig. 13.

Fig. 21
figure 21

\(m>2\), \(q\ge m-1\), \( 2 < d \le \frac{2m}{m-1}\)

Fig. 22
figure 22

\(1<m\le 2\), \(q>1\), \(2 < d \le \max \{2,\frac{2m}{(2m-1)(m-1)}\}\)

Fig. 23
figure 23

\(m>2 \), \(q\ge \frac{m}{2}\), \(2< d \le \frac{2m}{m-1}\)

Fig. 24
figure 24

\(1<m\le 2\), \(q>1\)

  • Figure 22 (Theorem 2.13(ii) for case \(1<m\le 2\), \(q>1\)): With Fig. 9, we explain strategy of searching \(q_2^*\) and \(q^*\). There are two regions \({\mathcal {R}} ( {\textbf {aAFE}})\) if \( \frac{2\,m}{m-1}< q_1 < \infty \) and \({\mathcal {R}} ( {\textbf {BbhDC}})\) if \(\frac{md}{1+d(m-1)}< q_1 < d(2\,m-1)\), in which we find \(q_2^*\) such that \((q_1, q_2^*)\) belongs to \({\mathcal {R}} ({\textbf {ABCDEF}})\). Then we are able to search matching \(q^*\in (1, q]\) and able to apply Theorem 2.13 (i). Also, we can apply the same strategy with Fig. 15, 16.

  • Figure 23 (Theorem 2.13(ii) for case \(m > 2\), \(q\ge \frac{m}{2}\)): With Fig. 17, we explain strategy of searching \(q_2^*\) and \(q^*\). There are two regions \({\mathcal {R}} ( {\textbf {jAFI}})\) and \({\mathcal {R}} ( {\textbf {GAbhHCG}})\), in which we find \(q_2^*\) such that \((q_1, q_2^*)\) belongs to \({\mathcal {R}} ({\textbf {FGCHI}})\) to apply Theorem 2.13 (i). Also, we can apply the same strategy with Fig. 18.

  • Figure 24 (Theorem 2.16(ii)): The following figure visualizes the idea of searching \(q^*\) and \(\tilde{q}^*_2\) with Fig. 10. Also we can repeat the same strategy with Fig. 19.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S., Kang, K. & Kim, H.K. Existence of weak solutions for porous medium equation with a divergence type of drift term. Calc. Var. 62, 126 (2023). https://doi.org/10.1007/s00526-023-02451-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-023-02451-4

Mathematics Subject Classification

Navigation