Skip to main content

Advertisement

Log in

Prescribed mass standing waves for energy critical Hartree equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we focus on the solutions to the energy critical Hartree equations

$$\begin{aligned} -\Delta u=\lambda u+\mu (|x|^{-\alpha }*|u|^{2})u+(|x|^{-4}*|u|^{2})u,\ \ x\in \mathbb {R}^{N} \end{aligned}$$

under the normalized constraint

$$\begin{aligned} \int _{{\mathbb {R}^N}} {{u}^2}=c>0, \end{aligned}$$

where \(N\ge 5\), \(\mu \in \mathbb {R}\), \(0<\alpha <4\), and the frequency \(\lambda \in \mathbb {R}\) is a part of unknown and appears as Lagrange multiplier. Under different assumptions on c, \(\mu \) and \(\alpha \), we prove some existence, non-existence, multiplicity and asymptotic results of normalized solutions to the above problem. In addition, the stability of the corresponding standing waves to the related time-dependent problem is discussed. These results are a continuation of our previous works, Luo (J Differ Equ, 195:455–467, 2019) and Cao et al. (J Differ Equ, 276:228–263, 2021), concerning normalized solutions to Hartree equations from energy subcritical to energy critical case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S.N., Sirakov, B.: Nonexistence of positive supersolutions of elliptic equations via the maximum principle. Commun. Partial Differ. Equ. 36, 2011–2047 (2011)

  2. Bartsch, T., Liu, Y., Liu, Z.: Normalized solutions for a class of nonlinear Choquard equations. Partial Differ. Equ. Appl. 1, 25 pp (2020)

  3. Bartsch, T., Soave, N.: Multiple normalized solutions for a competing system of Schrödinger equations. Calc. Var. PDEs, 58(1), 24 (2019)

  4. Bellazzini, J., Jeanjean, L.: On dipolar quantum gases in the unstable regime. SIAM J. Math. Anal. 48, 2028–2058 (2016)

    Article  MATH  Google Scholar 

  5. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

  6. Cao, D., Jia, H., Luo, X.: Standing waves with prescribed mass for the Schrödinger equations with van der Waals type potentials. J. Differ. Equ. 276, 228–263 (2021)

    Article  MATH  Google Scholar 

  7. Cazenave, T.: Semilinear Schrödinger equations, vol. 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)

  8. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  MATH  Google Scholar 

  9. Cingolani, S., Gallo, M., Tanaka, K.: Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities. Calc. Var. PDEs, 61(2), 34 (2022)

  10. Cingolani, S., Jeanjean, L.: Stationary waves with prescribed \(L^{2}\)-norm for the planar Schrödinger–Poisson system. SIAM J. Math. Anal. 51, 3533–3568 (2019)

    Article  MATH  Google Scholar 

  11. Dzyaloshinskii, I., Lifshitz, E., Pitaevskii, L.: The general theory of van der Waals’ forces. Adv. Phys. 10, 165–209 (1961)

    Article  MATH  Google Scholar 

  12. Gao, F., Yang, M.: On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci. China Math. 61, 1219–1242 (2018)

    Article  MATH  Google Scholar 

  13. Ghimenti, M., Moroz, V., Van Schaftingen, J.: Least action nodal solutions for the quadratic Choquard equation. Proc. Am. Math. Soc. 145(2), 737–747 (2017)

    Article  MATH  Google Scholar 

  14. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory, vol. 107 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. With appendices by David Robinson

  15. Guo, L., Hu, T., Peng, S., Shuai, W.: Existence and uniqueness of solutions for Choquard equation involving Hardy–Littlewood–Sobolev critical exponent. Calc. Var. PDEs, 58(4), 34 (2019)

  16. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger equation. Math. Ann. (2021). https://doi.org/10.1007/s00208-021-02228-0

  17. Jeanjean, L.: Existence of solutions with prescribed norm for semilinear elliptic equations. Nonlinear Anal. 28, 1633–1659 (1997)

    Article  MATH  Google Scholar 

  18. Jeanjean, L., Le, T.: Multiple normalized solutions for a Sobolev critical Schrödinger–Poisson–Slater equation. J. Differ. Equ. 303, 277–325 (2021)

    Article  MATH  Google Scholar 

  19. Jeanjean, L., Jendrej, J., Le, T., Visciglia, N.: Orbital stability of ground states for a Sobolev critical Schrödinger equation. J. Math. Pures Appl. 164, 158–179 (2022)

    Article  MATH  Google Scholar 

  20. Li, G., Ye, H.: The existence of positive solutions with prescribed \(L^{2}\)-norm for nonlinear Choquard equations. J. Math. Phys. 55, 121501 (2014)

  21. Li, X., Ma, S.: Choquard equations with critical nonlinearities. Commun. Contemp. Math. 22, 1950023 (2020)

    Article  MATH  Google Scholar 

  22. Lieb, E., Loss, M.: Analysis, 2nd ed. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)

  23. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    Article  MATH  Google Scholar 

  24. Lions, P.L.: Compactness and topological methods for some nonlinear variational problems of mathematical physics. Nonlinear Problems: Present and Future, pp. 17–34 (1982)

  25. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1, 109–145 (1984)

  26. Lions, P.L.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MATH  Google Scholar 

  27. Luo, X.: Normalized standing waves for the Hartree equations. J. Differ. Equ. 195, 455–467 (2019)

    MATH  Google Scholar 

  28. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MATH  Google Scholar 

  29. Moroz, V., Van Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MATH  Google Scholar 

  30. Moroz, V., Van Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MATH  Google Scholar 

  31. Moroz, V., Van Schaftingen, J.: A guide to the Choquard equation. J. Fixed Point Theory Appl. 19, 773–813 (2017)

    Article  MATH  Google Scholar 

  32. Porsev, S., Derevianko, A.: High-accuracy calculations of dipole, quadrupole, and octupole electric dynamic polarizabilities and van der Waals coefficients \(C_{6}\), \(C_{8}\), and \(C_{10}\) for alkaline-earth dimers. J. Exp. Theor. Phys. 102, 195–205 (2006)

    Article  Google Scholar 

  33. Seok, J.: Limit profiles and uniqueness of ground states to the nonlinear Choquard equations. Adv. Nonlinear Anal. 8, 1083–1098 (2019)

    Article  MATH  Google Scholar 

  34. Soave, N.: Normalized ground state for the NLS equations with combined nonlinearities: the Soboev critical case. J. Funct. Anal. 279, 108610 (2020)

  35. Soave, N.: Normalized ground state for the NLS equations with combined nonlinearities. J. Differ. Equ. 269, 6941–6987 (2020)

    Article  MATH  Google Scholar 

  36. Wang, Z.-Q., Xia, J.: Saddle solutions for the Choquard equation II. Nonlinear Anal., 201, 112053, 25 pp (2020)

  37. Wei, J., Wu, Y.: Normalized solutions for Schrödinger equations with critical Sobolev exponent and mixed nonlinearities. J. Funct. Anal. 283, 109574 (2022)

  38. Xia, J., Wang, Z.-Q.: Saddle solutions for the Choquard equation. Calc. Var. PDEs, 58(3), 30 (2019)

  39. Xia, J., Zhang, X.: Saddle solutions for the critical Choquard equation. Calc. Var. PDEs, 60(1), 29 (2021)

  40. Yang, D., Li, P., Tang, K.: The ground state van der Waals potentials of the calcium dimer and calcium rare-gas complexes. J. Chem. Phys. 131, 154301 (2009)

  41. Yang, J., Yu, W.: Schrödinger equations with van der Waals type potentials. J. Math. Anal. Appl. 471, 267–298 (2019)

    Article  MATH  Google Scholar 

  42. Ye, H.: Mass minimizers and concentration for nonlinear Choquard equations in \(\mathbb{R}^N\). Topol. Method. Nonl. Anal. 48, 393–417 (2016)

  43. Zheng, Y., Narayanaswamy, A.: Lifshitz theory of van der Waals pressure in dissipative media. Phys. Rev. A 83, 042504 (2011)

Download references

Acknowledgements

The authors are very grateful to the referee for her/his valuable suggestions which lead to the great improvements of the present paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Luo.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Huifang Jia is supported by NNSF of China (No. 12001126) and GDUT grant (No. 263113459), Xiao Luo is supported by NNSF of China (No. 11901147).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, H., Luo, X. Prescribed mass standing waves for energy critical Hartree equations. Calc. Var. 62, 71 (2023). https://doi.org/10.1007/s00526-022-02416-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02416-z

Mathematics Subject Classification

Navigation