Skip to main content
Log in

Boundedness of solutions to Dirichlet, Neumann and Robin problems for elliptic equations in Orlicz spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Boundary value problems for second-order elliptic equations in divergence form, whose nonlinearity is governed by a convex function of non-necessarily power type, are considered. The global boundedness of their solutions is established under boundary conditions of Dirichlet, or Neumann, or Robin type. A decisive role in the results is played by optimal forms of Orlicz-Sobolev embeddings and boundary trace embeddings, which allow for critical growths of the coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abrantes Santos, J., Monari Soares, S.H.: A limiting free boundary problem for a degenerate operator in Orlicz–Sobolev spaces. Rev. Mat. Iberoam. 36, 1687–1720 (2020)

    MATH  Google Scholar 

  2. Alberico, A.: Boundedness of solutions to anisotropic variational problems. Comm. Partial Diff. Equ. 36, 470–486 (2011)

    MATH  Google Scholar 

  3. Alberico, A., di Blasio, G., Feo, F.: An eigenvalue problem for the anisotropic \(\Phi \)-Laplacian. J. Diff. Equ. 269, 4853–4883 (2020)

    MATH  Google Scholar 

  4. Balci, A.Kh., Surnachev, M.: Lavrentiev gap for some classes of generalized Orlicz functions, Nonlinear Anal. 207, Paper No. 112329, 22 pp (2021)

  5. Barletta, G., Cianchi, A.: Dirichlet problems for fully anisotropic elliptic equations. Proc. Roy. Soc. Edinburgh Sect. A 147, 25–60 (2017)

  6. Baroni, P.: Riesz potential estimates for a general class of quasilinear equations. Calc. Var. Part. Diff. Equ. 53, 803–846 (2015)

    MATH  Google Scholar 

  7. Beck, L., Mingione, G.: Lipschitz bounds and non-uniform ellipticity. Comm. Pure Appl. Math. 73, 944–1034 (2020)

    MATH  Google Scholar 

  8. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Boston (1988)

    MATH  Google Scholar 

  9. Benyaiche, A., Harjulehto, P., Hästö, P., Karppinen, A.: The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth. J. Diff. Equ. 275, 790–814 (2021)

    MATH  Google Scholar 

  10. Braga, J.E.M., Moreira, D.: Inhomogeneous Hopf–Oleinik lemma and regularity of semiconvex supersolutions via new barriers for the Pucci extremal operators. Adv. Math. 334, 184–242 (2018)

    MATH  Google Scholar 

  11. Breit, D., Stroffolini, B., Verde, A.: A general regularity theorem for functionals with \(\varphi \)-growth. J. Math. Anal. Appl. 383, 226–233 (2011)

    MATH  Google Scholar 

  12. Bulíček, M., Gwiazda, P., Kalousek, M., Świerczewska-Gwiazda, A.: Existence and homogenization of nonlinear elliptic systems in nonreflexive spaces. Nonlinear Anal. 194, 111487 (2020)

    MATH  Google Scholar 

  13. Carozza, M., Kristensen, J., Passarelli di Napoli, A.: Higher differentiability of minimizers of convex variational integrals. Ann. Inst. H. Poincaré C Anal. Non Linéaire 28, 395–411 (2011)

    MATH  Google Scholar 

  14. Celada, P., Ok, J.: Partial regularity for non-autonomous degenerate quasi-convex functionals with general growth. Nonlinear Anal. 194, 111473 (2020)

    MATH  Google Scholar 

  15. Chlebicka, I.: A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal. 175, 1–27 (2018)

    MATH  Google Scholar 

  16. Chlebicka, I., Giannetti, F., Zatorska-Goldstein, A.: Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth, preprint, (2020)

  17. Chlebicka, I., Gwiazda, P., Świerczewska-Gwiazda, A., Wróblewska-Kamińska, A.: Partial Differential Equations in Anisotropic Musielak–Orlicz Spaces. Springer Monographs in Mathematics, Springer, Cham (2021)

    MATH  Google Scholar 

  18. Cianchi, A.: A sharp embedding theorem for Orlicz–Sobolev spaces. Indiana Univ. Math. J. 45, 39–65 (1996)

    MATH  Google Scholar 

  19. Cianchi, A.: Boundedness of solutions to variational problems under general growth conditions. Comm. Part. Diff. Equ. 22, 1629–1646 (1997)

    MATH  Google Scholar 

  20. Cianchi, A.: Local boundedness of minimizers of anisotropic functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 147–168 (2000)

    MATH  Google Scholar 

  21. Cianchi, A.: Optimal Orlicz–Sobolev embeddings. Rev. Mat. Iberoam. 20, 427–474 (2004)

    MATH  Google Scholar 

  22. Cianchi, A.: Orlicz–Sobolev boundary trace embeddings. Math. Zeit. 266, 431–449 (2010)

    MATH  Google Scholar 

  23. Cianchi, A., Edmunds, D.E., Gurka, P.: On weighted Poincaré inequalities. Math. Nachr. 180, 15–41 (1996)

    MATH  Google Scholar 

  24. Cianchi, A., Kerman, R., Pick, L.: Boundary trace inequalities and rearrangements. J. Anal. Math. 105, 241–265 (2008)

    MATH  Google Scholar 

  25. Cianchi, A., Pick, L.: Sobolev embeddings into BMO, VMO, and \(L_{\infty }\). Ark. Mat. 36, 317–340 (1998)

    MATH  Google Scholar 

  26. Cianchi, A., Pick, L., Slavíková, L.: Higher-order Sobolev embeddings and isoperimetric inequalities. Adv. Math. 273, 568–650 (2015)

    MATH  Google Scholar 

  27. De Filippis, C., Mingione, G.: Lipschitz bounds and nonautonomous integrals. Arch. Ration. Mech. Anal. 242, 973–1057 (2021)

    MATH  Google Scholar 

  28. Diening, L., Stroffolini, B., Verde, A.: Everywhere regularity of functionals with \(\phi \)-growth. Manus. Math. 129, 449–481 (2009)

    MATH  Google Scholar 

  29. García Azorero, J.P., Peral Alonso, I.: Some results about the existence of a second positive solution in a quasilinear critical problem. Indiana Univ. Math. J. 43, 941–957 (1994)

    MATH  Google Scholar 

  30. Gossez, J.-P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    MATH  Google Scholar 

  31. Guedda, M., Véron, L.: Quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 13, 879–902 (1989)

    MATH  Google Scholar 

  32. Harjulehto, P., Hästö, P., Toivanen, O.: Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var. Part. Diff. Equ., 56(2), Paper No. 22, 26 pp (2017)

  33. Korolev, A.G.: On the boundedness of generalized solutions of elliptic differential equations with nonpower nonlinearities. Mat. Sb. 180, 78–100 (1989)

    Google Scholar 

  34. Kreǐn, S.G., Petunin, Yu.I., Semënov, E.M.: Interpolation of Linear Operators, Translations of Mathematical Monographs, 54. American Mathematical Society, Providence, R.I., (1982)

  35. Ladyzhenskaya, O.A., Ural’ceva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  36. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzenskaya and Ural’ceva for elliptic equations. Comm. Part. Diff. Equ. 16, 311–361 (1991)

    MATH  Google Scholar 

  37. Marano, S.A., Marino, G., Moussaoui, A.: Singular quasilinear elliptic systems in \({\mathbb{R} }^N\). Ann. Mat. Pura Appl. 198(5), 1581–1594 (2019)

    MATH  Google Scholar 

  38. Marcellini, P.: Regularity for elliptic equations with general growth conditions. J. Diff. Equ. 105, 296–333 (1993)

    MATH  Google Scholar 

  39. Marino, G., Winkert, P.: Moser iteration applied to elliptic equations with critical growth on the boundary. Nonlinear Anal. 180, 154–169 (2019)

    MATH  Google Scholar 

  40. Marino, G., Winkert, P.: \(L^\infty \)-bounds for general singular elliptic equations with convection term. Appl. Math. Lett. 107, 106410 (2020)

    MATH  Google Scholar 

  41. Marino, G., Winkert, P.: Global a priori bounds for weak solutions of quasilinear elliptic systems with nonlinear boundary condition. J. Math. Anal. Appl. 482(2), 123555 (2020)

    MATH  Google Scholar 

  42. Maz’ya, V.: Classes of regions and imbedding theorems for function spaces, Dokl. Akad. Nauk. SSSR 133, 527–530 (1960) (Russian); English translation: Soviet Math. Dokl.1, 882–885 (1960)

  43. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer-Verlag, Heidelberg (2011)

    MATH  Google Scholar 

  44. Mustonen, V., Tienari, M.: An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces. Proc. Roy. Soc. Edinburgh Sect. A 129, 153–163 (1999)

    MATH  Google Scholar 

  45. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1991)

    MATH  Google Scholar 

  46. Talenti, G.: Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl. 120, 160–184 (1979)

    MATH  Google Scholar 

  47. Talenti, G.: Boundedness of minimizers. Hokkaido Math. J. 19, 259–279 (1990)

    MATH  Google Scholar 

  48. Wang, X.J.: Neumann problems of semilinear elliptic equations involving critical Sobolev exponents. J. Diff. Equ. 93, 283–310 (1991)

    MATH  Google Scholar 

  49. Winkert, P.: L\(^\infty \)-estimates for nonlinear elliptic Neumann boundary value problems. NoDEA Nonlinear Diff. Equ. Appl. 17, 289–302 (2010)

    MATH  Google Scholar 

  50. Wolanski, N.: A free boundary problem in Orlicz spaces related to mean curvature, Nonlinear Anal. 212, Paper No. 112452, 21 (2021)

  51. Ziemer, W.P.: Weakly Differentiable Functions. Springer-Verlag, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for carefully reading the paper and for her/his valuable comments.

Funding

This research was partly funded by: (i) Research Project of the Italian Ministry of Education, University and Research (MIUR), Prin 2017 “Nonlinear differential problems via variational, topological and set-valued methods”, Grant Number 2017AYM8XW (G.Barletta). (ii) Research Project of the Italian Ministry of Education, University and Research (MIUR) Prin 2017 “Direct and inverse problems for partial differential equations: theoretical aspects and applications”, Grant Number 201758MTR2 (A.Cianchi); (iii) GNAMPA of the Italian INdAM - National Institute of High Mathematics (Grant Number not available) (G.Barletta, A.Cianchi, G.Marino); (iv) DFG via grant GZ: MA 10100/1-1, Grant Number 496629752 (G.Marino).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cianchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by L. Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barletta, G., Cianchi, A. & Marino, G. Boundedness of solutions to Dirichlet, Neumann and Robin problems for elliptic equations in Orlicz spaces. Calc. Var. 62, 65 (2023). https://doi.org/10.1007/s00526-022-02393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02393-3

Mathematics Subject Classification

Navigation