Skip to main content
Log in

Harnack’s estimate for a mixed local–nonlocal doubly nonlinear parabolic equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We establish Harnack’s estimates for positive weak solutions to a mixed local and nonlocal doubly nonlinear parabolic equation, of the type

$$\begin{aligned} \partial _t\left( |u|^{p-2}u\right) -{\textrm{div}}\,\textbf{A}\left( x,t,u,Du\right) +\mathcal {L}u(x,t)=0, \end{aligned}$$

where the vector field \(\textbf{A}\) satisfies the p-ellipticity and growth conditions and the integro-differential operator \(\mathcal {L}\) whose model is the fractional p-Laplacian. All results presented in this paper are provided by using sharp tools in the doubly nonlinear theory together with quantitative estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Since \(\{q_i\}_{i=1}^k\) is increasing sequence, it is enough to consider that \(0<q=q_k=q_{k-1}\kappa <(p-1)\kappa \).

References

  1. Abdellaoui, B., Attar, A., Bentifour, R., Peral, I.: On fractional \(p\)-Laplacian parabolic problem with general data. Ann. Mat. Pura Appl. (4) 197(2), 329–356 (2018)

    Article  MATH  Google Scholar 

  2. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case \(1<p<2\). J. Math. Anal. Appl. 140(1), 115–135 (1989)

    Article  MATH  Google Scholar 

  3. Banerjee, A., Garain, P., Kinnunen, J.: Some local properties of subsolutons and supersolutions for a doubly nonlinear nonlocal parabolic \(p\)-Laplace equation. Ann. Mat. Pura Appl. 201(4), 1717–1751 (2022)

  4. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s\,\uparrow \,1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MATH  Google Scholar 

  5. Bögelein, V., Duzaar, F., Marcellini, P.: Parabolic systems with \(p, q\)-growth: a variational approach. Arch. Ration. Mech. Anal. 210(1), 219–267 (2013)

    Article  MATH  Google Scholar 

  6. Bögelein, V., Dietrich, N., Vestberg, M.: Existence of solutions to a diffusive shallow medium equation. J. Evol. Equ. 21(1), 845–889 (2021)

    Article  MATH  Google Scholar 

  7. Bögelein, V., Duzaar, F., Korte, R., Scheven, C.: The higher integrability of weak solutions of porous medium systems. Adv. Nonlinear Anal. 8(1), 1004–1034 (2019)

    Article  MATH  Google Scholar 

  8. Bögelein, V., Duzaar, F., Korte, R., Scheven, C.: Higher integrability for doubly nonlinear parabolic systems. J. Math. Pures Appl. 143, 31–72 (2020)

    Article  MATH  Google Scholar 

  9. Bögelein, V., Duzaar, F., Liao, N.: On the Hölder regularity of signed solutions to a doubly nonlinear equation. J. Funct. Anal. 281(9), 109–173 (2021)

    Article  MATH  Google Scholar 

  10. Bombieri, E., Giusti, E.: Harnack’s inequality for elliptic differential equations on minimal surfaces. Invent. Math. 15, 24–46 (1972)

    Article  MATH  Google Scholar 

  11. Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional \(p\)-Laplace equation in the superquadratic case. Adv. Math. 304, 300–354 (2017)

    Article  MATH  Google Scholar 

  12. Brasco, L., Lindgren, E., Strömqvist, M.: Continuity of solutions to a nonlinear fractional diffusion equation. J. Evol. Equ. 21(4), 4319–4381 (2021)

    Article  MATH  Google Scholar 

  13. Brasco, L., Parini, E.: The second eigenvalue of the fractional \(p\) Laplacian. Adv. Calc. Var. 9(4), 323–355 (2016)

  14. Buccheri, S., da Silva, J.V., de Miranda, L.H.: A System of Local / Nonlocal \(p\)-Laplacians: The Eigenvalue Problem and Its Asymptotic Limit as \(p \rightarrow \infty \), arXiv:2001.05985, (2020)

  15. Cozzi, M.: Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: a unified approach via fractional De Giorgi classes. J. Funct. Anal. 272(11), 4762–4837 (2017)

    Article  MATH  Google Scholar 

  16. Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal Harnack inequalities. J. Funct. Anal. 267(6), 1807–1836 (2014)

    Article  MATH  Google Scholar 

  17. Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)

    Article  MATH  Google Scholar 

  18. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext, Springer-Verlag, New York (1993)

    Book  MATH  Google Scholar 

  19. Ding, M., Zhang, C., Zhou, S.: Local boundedness and Hölder continuity for the parabolic fractional \(p\)-Laplace equations. Calc. Var. Partial Differ. Equ. 60, 38 (2021)

    Article  MATH  Google Scholar 

  20. Dipierro, S., Lippi, E.P., Valdinoci, E.: (Non)local logistic equations with Neumann conditions, arXiv:2101.02315 , (2021)

  21. Fang, Y., Shang, B., Zhang, C.: Regularity theory for mixed local and nonlocal parabolic \(p\)-Laplace equations. J. Geom. Anal. 32(1), 1–33 (2022)

    Article  MATH  Google Scholar 

  22. Garain, P., Kinnunen, J.: On the regularity theory for mixed local and nonlocal quasilinear parabolic equations, arXiv:2108.02986, (2021)

  23. Garain, P., Kinnunen, J.: Weak Harnack inequality for a mixed local and nonlocal parabolic equation, arXiv:2105.15016, (2021)

  24. Gianazza, U., Vespri, V.: A Harnack inequality for solutions of doubly nonlinear parabolic equations. J. Appl. Funct. Anal. 1(3), 271–284 (2006)

    MATH  Google Scholar 

  25. Giaquinta, M., Giusti, E.: On the regularity of the minima of variational integrals. Acta Math. 148, 31–46 (1982)

    Article  MATH  Google Scholar 

  26. Giaquinta, M., Modica, G.: Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscr. Math. 57(1), 55–99 (1986)

    Article  MATH  Google Scholar 

  27. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Company, Tuck Link, Singapore (2003)

    Book  MATH  Google Scholar 

  28. Kim, Y.C.: Nonlocal Harnack inequalities for nonlocal heat equations. J. Differ. Equ. 267, 6691–6757 (2019)

    Article  MATH  Google Scholar 

  29. Kinnunen, J., Kuusi, T.: Local behavior of solutions to doubly nonlinear parabolic equations. Math. Ann. 337(3), 705–728 (2007)

    Article  MATH  Google Scholar 

  30. Kinnunen, J., Lindqvist, P.: Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. (4) 185(3), 411–435 (2006)

    Article  MATH  Google Scholar 

  31. Kassmann, M., Schwab, R.W.: Regularity results for nonlocal parabolic equations. Riv. Math. Univ. Parma (N.S.) 5(1), 183–212 (2014)

    MATH  Google Scholar 

  32. Kuusi, T., Misawa, M., Nakamura, K.: Regularity estimates for the \(p\)-Sobolev flow. J. Geom. Anal. 30, 1918–1964 (2020)

    Article  MATH  Google Scholar 

  33. Kuusi, T., Misawa, M., Nakamura, K.: Global existence for the \(p\)-Sobolev flow. J. Differ. Equ. 279, 245–281 (2021)

    Article  MATH  Google Scholar 

  34. Kuusi, T., Palatucci, G. (eds.): Recent Developments in Nonlocal Theory. De Gruyter, Berlin/Boston (2018)

    MATH  Google Scholar 

  35. Mazón, J.M., Rossi, J.D., Toledo, J.: Fractional \(p\)-Laplacian evolution equations. J. Math. Pures Appl. (9) 105(6), 810–844 (2016)

    Article  MATH  Google Scholar 

  36. Nakamura, K.: Local Boundedness of a mixed local-nonlocal doubly nonlinear equation. J. Evol. Equ. 22(3), 75 (2022)

  37. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev space. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MATH  Google Scholar 

  38. Puhst, D.: On the evolutionary fractional \(p\)-Laplacian. Appl. Math. Res. Express AMRX 2, 253–273 (2015)

    Article  MATH  Google Scholar 

  39. Sturm, S.: Existence of weak solutions of doubly nonlinear parabolic equations. J. Math. Anal. Appl. 455(1), 842–863 (2017)

    Article  MATH  Google Scholar 

  40. Strömqvist, M.: Local boundedness of solutions to non-local parabolic equations modeled on the fractional \(p\)-Laplacian. J. Differ. Equ. 266(12), 7948–7979 (2019)

    Article  MATH  Google Scholar 

  41. Strömqvist, M.: Harnack’s inequality for parabolic nonlocal equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 36(6), 1709–1745 (2019)

    Article  MATH  Google Scholar 

  42. Vázquez, J.L.: The Dirichlet problem for the fractional \(p\)-Laplacian evolution equation. J. Differ. Equ. 260(7), 6038–6056 (2016)

    Article  MATH  Google Scholar 

  43. Trudinger, N.S.: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21, 205–226 (1968)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Kenta Nakamura acknowledges the support by Grant-in-Aid for Young Scientists Grant #21K13824 (2021) at Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Nakamura.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.1

Proof of Lemma 3.1

Although the argument used here is almost same as Proposition 3.4 and Lemma 3.8 (also [36, Proposition 3.1]), for the sake of completeness we shall nevertheless give the full proof. For this, we divide it into four different steps.

Step 1: Beginning.   Let \(t_1 \in (t_0-\varrho ^p,t_0)\) be an arbitrary number. Given \(\delta >0\) small, take the cutoff function \(\psi _\delta (t)\) with respect to time, defined by

$$\begin{aligned} \psi _\delta (t):={\left\{ \begin{array}{ll} 0,\quad &{}\,\,\,t \in (t_0-\varrho ^p, t_1), \\ \frac{1}{\delta }(t-t_1), \quad &{}\,\,\,t \in [t_1, t_1+\delta ),\\ 1,\quad &{}\,\,\,t \in [t_1+\delta , t_0). \end{array}\right. } \end{aligned}$$

In the weak formulation (2.10), we switch the test function \(\varphi \) to \(\varphi ^p\psi _\delta (t)u^{-\varepsilon }\) with nonnegative \(\varphi \in C^\infty _0(Q^-_\varrho (z_0))\). Then the evolutional term is divided into two terms as follows:

$$\begin{aligned} \iint _{\Omega _T}\partial _t[|u|^{p-2}u]_h\varphi ^p\psi _\delta (t)u^{-\varepsilon }\,{\textrm{d}}x{\textrm{d}}t&=\iint _{Q^-_\varrho (z_0)}\varphi ^p\psi _\delta (t)\partial _t[u^{p-1}]_h\left( u^{-\varepsilon }-[u^{p-1}]_h^{-\frac{\varepsilon }{p-1}}\right) \,{\textrm{d}}x{\textrm{d}}t\\&\quad +\iint _{Q^-_\varrho (z_0)}\varphi ^p\psi _\delta (t)\partial _t[u^{p-1}]_h[u^{p-1}]_h^{-\frac{\varepsilon }{p-1}}\,{\textrm{d}}x{\textrm{d}}t\\&=:\textbf{I}_1+\textbf{I}_2, \end{aligned}$$

where the definition of \(\textbf{I}_1\) and \(\textbf{I}_2\) are obvious form the context. Abbreviating

$$\begin{aligned} f_h:=[u^{p-1}]_h^{\frac{1}{p-1}} \quad \iff \quad [u^{p-1}]_h=f_h^{p-1}, \end{aligned}$$

and Lemma 2.8-(ii) and (2.5) with \(\alpha =1+\frac{p-1}{\varepsilon }\) in Lemma 2.3 imply that

$$\begin{aligned} \textbf{I}_1&=\iint _{Q^-_\varrho (z_0)}\varphi ^p\psi _\delta (t)\frac{u^{p-1}-[u^{p-1}]_h}{h}\cdot \frac{[u^{p-1}]_h^{\frac{\varepsilon }{p-1}}-u^\varepsilon }{[u^{p-1}]_h^{\frac{\varepsilon }{p-1}}u^\varepsilon }\,{\textrm{d}}x{\textrm{d}}t\\&=\iint _{Q^-_\varrho (z_0)}\varphi ^p\psi _\delta (t)\frac{u^{p-1}-f_h^{p-1}}{h}\cdot \frac{f_h^\varepsilon -u^\varepsilon }{f_h^\varepsilon u^\varepsilon }\,{\textrm{d}}x{\textrm{d}}t\leqq 0. \end{aligned}$$

From integration by parts, it follows that

$$\begin{aligned} \textbf{I}_2&=\frac{p-1}{p-1-\varepsilon }\iint _{Q^-_\varrho (z_0)}\varphi ^p\psi _\delta (t)\partial _t[u^{p-1}]_h^{\frac{p-1-\varepsilon }{p-1}}\,{\textrm{d}}x{\textrm{d}}t\\&=-\frac{p-1}{p-1-\varepsilon }\iint _{Q^-_\varrho (z_0)}\left( p\varphi ^{p-1}\varphi _t\psi _\delta +\varphi ^p\psi \delta ^\prime \right) [u^{p-1}]_h^{\frac{p-1-\varepsilon }{p-1}}\,{\textrm{d}}x{\textrm{d}}t. \end{aligned}$$

The preceding estimates above and the fact that \([u^{p-1}]_h^{\frac{1}{p-1}} \longrightarrow u\) in \(L^p(\Omega _T)\) by Lemma 2.8-(iii) give that

(A.1)

The spatial term can be dealt with comparatively easily. Indeed, by the use of convergence \([|Du|^{p-2}Du]_h \longrightarrow |Du|^{p-2}Du\) in \(L^{\frac{p}{p-1}}(\Omega _T)\) as \(h\searrow 0\) via Lemma 2.8-(ii) and Young’s inequality with the exponents \(\left( \frac{p}{p-1},p\right) \) yields that, for any \(\theta >0\),

$$\begin{aligned}&\lim _{h\searrow 0}\iint _{\Omega _T}[|Du|^{p-2}Du]_h\cdot D\left( \varphi ^p\psi _\delta (t)u^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}t\\&\quad =\iint _{\Omega _T}|Du|^{p-2}Du\cdot D\left( \varphi ^p\psi _\delta (t)u^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}t\\&\quad =\iint _{\Omega _T}|Du|^{p-2}Du\cdot \left( p\varphi ^{p-1}D\varphi \,u^{-\varepsilon }+\varphi ^pDu^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}t\\&\quad \leqq p\iint _{Q^-_\varrho (z_0)}\Big (|Du|u^{-\frac{\varepsilon +1}{p}}\varphi \psi _\delta ^{\frac{1}{p}}\Big )^{p-1}\Big (|D\varphi |u^{-\varepsilon +(\varepsilon +1)\frac{p-1}{p}}\psi _\delta ^{\frac{1}{p}}\Big )\,{\textrm{d}}x{\textrm{d}}t\\&\quad \quad -\varepsilon \iint _{\Omega _T}|Du|^pu^{-\varepsilon -1}\varphi ^p\psi _\delta \,{\textrm{d}}x{\textrm{d}}t\\&\quad \leqq \big [(p-1)\theta -\varepsilon \big ]\iint _{\Omega _T}|Du|^pu^{-\varepsilon -1}\varphi ^p\psi _\delta \,{\textrm{d}}x{\textrm{d}}t\\&\qquad +c(\theta )\iint _{Q^-_\varrho (z_0)}|D\varphi |^pu^{-\varepsilon p+(\varepsilon +1)(p-1)}\varphi ^p\psi _\delta \,{\textrm{d}}x{\textrm{d}}t, \end{aligned}$$

which, by taking \(\theta =\frac{\varepsilon }{2(p-1)}\), yields in particular that

$$\begin{aligned}&\lim _{h\searrow 0}\iint _{\Omega _T}[|Du|^{p-2}Du]_h\cdot D\left( \varphi ^p\psi _\delta (t)u^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\quad \leqq -\frac{\varepsilon }{2}\iint _{\Omega _T}|Du|^pu^{-\varepsilon -1}\varphi ^p\psi _\delta \,{\textrm{d}}x+c(\varepsilon )\iint _{Q^-_\varrho (z_0)}|D\varphi |^pu^{p-1-\varepsilon }\psi _\delta \,{\textrm{d}}x{\textrm{d}}t, \end{aligned}$$
(A.2)

where we have computed that \(-\varepsilon p+(\varepsilon +1)(p-1)=p-1-\varepsilon \).

Step 2: Fractional term.   Firstly, we will show that

$$\begin{aligned}&\int _0^T\iint _{{\mathbb {R}}^n\times {\mathbb {R}}^n}\left[ U(x,y,t)K(x,y,t)\right] _h\left( \phi (x,t)-\phi (y,t)\right) \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\nonumber \\&\quad \longrightarrow \int _0^T\iint _{{\mathbb {R}}^n\times {\mathbb {R}}^n}U(x,y,t)K(x,y,t)\left( \phi (x,t)-\phi (y,t)\right) \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\end{aligned}$$
(A.3)

in the limit \(h\searrow 0\), where we abbreviated \(\phi \equiv \varphi ^p\psi _\delta (t)u^{-\varepsilon }\) for short. In order to prove (A.3) we consider the quantity

$$\begin{aligned} (\textbf{II})_h&:=\left| \int _0^T\iint _{D_\Omega }\Big (\left[ U(x,y,t)K(x,y,t)\right] _h-U(x,y,t)K(x,y,t)\Big )\left( \phi (x,t)-\phi (y,t)\right) \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\right| \\&\leqq \int _0^T\iint _{\Omega \times \Omega }\big |\cdots \big |\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t+2\int _0^T\iint _{\Omega \times \Omega ^c}\big |\cdots \big |\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&=:(\textbf{II}_1)_h+2(\textbf{II}_2)_h, \end{aligned}$$

with denoting \(D_\Omega :=({\mathbb {R}}^n \times {\mathbb {R}}^n) \setminus (\Omega ^c \times \Omega ^c)\), where the definition of \((\textbf{II}_1)_h\) and \((\textbf{II}_2)_h\) are clear from the context. We now claim the following: As \(h \searrow 0\),

$$\begin{aligned} \Big [U(x,y,t)K(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Big ]_h \longrightarrow U(x,y,t)K(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\quad \text {in}\quad L^{\frac{p}{p-1}}(\Omega ^2_T), \end{aligned}$$
(A.4)

where \(\Omega ^2_T:=\Omega \times \Omega \times (0,T)\). Indeed, since

$$\begin{aligned} \Big \Vert U(x,y,t)K(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Big \Vert _{L^{\frac{p}{p-1}}(\Omega ^2_T)}^{\frac{p}{p-1}}<\infty \end{aligned}$$

Lemma 2.8-(i) with \(E=\Omega ^2\) implies (A.4). Therefore, using (A.4), Hölder’s inequality and Lemma 2.6, we have

$$\begin{aligned} (\textbf{II}_1)_h&=\int _0^T\iint _{\Omega \times \Omega }\Bigg |\left[ U(x,y,t)K(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\\&\quad -U(x,y,t)K(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Bigg | \\&\quad \times \frac{\left| \phi (x,t)-\phi (y,t)\right| }{|x-y|^{\frac{1}{p}(n+sp)}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\leqq c\left( \int _0^T\iint _{\Omega \times \Omega }\Bigg |\left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\right. \\&\left. \quad -UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Bigg |^{\frac{p}{p-1}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\right) ^{\frac{p-1}{p}} \\&\quad \times \left( \int _{\Omega _T}|D\phi (x)|^p\,{\textrm{d}}x{\textrm{d}}t\right) ^{\frac{1}{p}} \\&\longrightarrow 0 \end{aligned}$$

as \(h\searrow 0\), where we used the shorthand notation \(UK(x,y,t)=U(x,y,t)K(x,y,t)\).

We next prove that \( (\textbf{II}_1)_h \longrightarrow 0\). Take a ball \(B_R\equiv B_R(0)\) satisfying \(B_R \Supset \Omega \). By \(\phi (y,t)=0\) for any \((y,t) \in (B_R\setminus \Omega )\times (0,T)\) and Hölder’s inequality, we obtain

$$\begin{aligned} (\textbf{II}_2)_h(R)&:=\int _0^T\iint _{\Omega \times (B_R\setminus \Omega )}\Big |\left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h-UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Big | \nonumber \\&\quad \times \frac{\left| \phi (x,t)\right| }{|x-y|^{\frac{1}{p}(n+sp)}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\nonumber \\&\leqq \left( \int _0^T\iint _{\Omega \times (B_R\setminus \Omega )} \frac{\left| \phi (x,t)\right| ^p}{|x-y|^{n+sp}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\right) ^{\frac{1}{p}} \nonumber \\&\quad \times \left( \int _0^T\iint _{\Omega \times (B_R\setminus \Omega )}\Bigg |\left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\nonumber \right. \\&\left. \quad -UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Bigg |^{\frac{p}{p-1}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\right) ^{\frac{p-1}{p}}\nonumber \\&\leqq (\textbf{III})^{\frac{1}{p}}(\textbf{IV})^{\frac{p-1}{p}}, \end{aligned}$$
(A.5)

where

$$\begin{aligned} \textbf{III}:=\int _0^T\iint _{\Omega \times (B_R\setminus \Omega )} \frac{\left| \phi (x,t)\right| ^p}{|x-y|^{n+sp}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\end{aligned}$$

and

$$\begin{aligned} \textbf{IV}:= & {} \int _0^T\iint _{\Omega \times (B_R\setminus \Omega )}\Big |\left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\\{} & {} -UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Big |^{\frac{p}{p-1}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t. \end{aligned}$$

Since

$$\begin{aligned} |x-y| \geqq d_R:=\textrm{dist}\left( \,{\textrm{supp}}\,\phi (\cdot ,t),\, B_R \setminus \Omega \right) \qquad \forall (x,y) \in \,{\textrm{supp}}\,\phi (\cdot ,t) \times (B_R\setminus \Omega ) \end{aligned}$$

and \(\,{\textrm{supp}}\,\phi =Q_\varrho ^-(z_0)\), we estimate

$$\begin{aligned} \textbf{III}&=\iint _{Q_\varrho ^-(z_0)}\left( \int _{B_R\setminus \Omega }\frac{\,{\textrm{d}}y}{|x-y|^{n+sp}} \right) |\phi (x,t)|\,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\leqq m^{-\varepsilon }\Vert \varphi \Vert _{L^\infty (Q_\varrho ^-(z_0))}|Q_\varrho ^-(z_0)|\left( \int _{\mathbb {R}^n \setminus B_{d_R}(x)}\frac{\,{\textrm{d}}y}{|x-y|^{n+sp}} \right) \nonumber \\&=m^{-\varepsilon }\Vert \varphi \Vert _{L^\infty (Q_\varrho ^-(z_0))}|Q_\varrho ^-(z_0)|\cdot \frac{c(n)}{sp}d_R^{-sp}. \end{aligned}$$
(A.6)

Next, we estimate the integrand of \(\textbf{IV}\):

$$\begin{aligned}&\Bigg |\left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h-UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Bigg |^{\frac{p}{p-1}} \\&\quad \leqq c(p)\left( \left| \left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\right| ^{\frac{p}{p-1}}+\left| UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right| ^{\frac{p}{p-1}}\right) . \end{aligned}$$

By the use of Hölder’s inequality and the assumption (2.3), we infer that

$$\begin{aligned} \left| \left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\right|&=\left| \frac{1}{h}\int _0^te^{\frac{s-t}{h}}UK(x,y,s)|x-y|^{\frac{1}{p}(n+sp)}\,{\textrm{d}}s\right| \\&\leqq \Lambda \cdot \frac{1}{h}\int _0^te^{\frac{s-t}{h}}\frac{|U(x,y,s)|}{|x-y|^{\frac{p-1}{p}(n+sp)}}\,{\textrm{d}}s\\&\leqq \Lambda \left( \frac{1}{h}\int _0^te^{\frac{s-t}{h}}\,{\textrm{d}}s\right) ^{\frac{1}{p}}\left( \frac{1}{h}\int _0^te^{\frac{s-t}{h}}\frac{|U(x,y,s)|^{\frac{p}{p-1}}}{|x-y|^{n+sp}}\,{\textrm{d}}s\right) ^{\frac{p-1}{p}} \\&=\Lambda (1-e^{-\frac{t}{h}})^{\frac{1}{p}}\left[ \frac{|U(x,y,t)|^{\frac{p}{p-1}}}{|x-y|^{n+sp}}\right] _h^{\frac{p-1}{p}}, \end{aligned}$$

that is,

$$\begin{aligned} \left| \left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h\right| ^{\frac{p}{p-1}}\leqq \Lambda ^{\frac{p}{p-1}} (1-e^{-\frac{t}{h}})^{\frac{1}{p-1}}\left[ \frac{|U(x,y,t)|^{\frac{p}{p-1}}}{|x-y|^{n+sp}}\right] _h. \end{aligned}$$

Similarly, we have

$$\begin{aligned} \left| UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right| ^{\frac{p}{p-1}}\leqq \Lambda ^{\frac{p}{p-1}}\frac{|U(x,y,t)|^{\frac{p}{p-1}}}{|x-y|^{n+sp}}. \end{aligned}$$

Collecting the preceding estimates above, the integrand of \(\textbf{IV}\) is estimated as

$$\begin{aligned}&\Bigg |\left[ UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\right] _h-UK(x,y,t)|x-y|^{\frac{1}{p}(n+sp)}\Bigg |^{\frac{p}{p-1}} \\&\quad \leqq c\Lambda ^{\frac{p}{p-1}} \left( \left[ \frac{|U(x,y,t)|^{\frac{p}{p-1}}}{|x-y|^{n+sp}}\right] _h+\frac{|U(x,y,t)|^{\frac{p}{p-1}}}{|x-y|^{n+sp}}\right) \\&\quad =c\Lambda ^{\frac{p}{p-1}} \left( \left[ \frac{\big |u(x,t)-u(y,t)\big |^{p}}{|x-y|^{n+sp}}\right] _h+\frac{\big |u(x,t)-u(y,t)\big |^{p}}{|x-y|^{n+sp}}\right) \\&\quad =:c\Lambda ^{\frac{p}{p-1}}W_h(x,y,t). \end{aligned}$$

Since \(W_h \in L^1(\Omega \times (B_R \setminus \Omega )\times (0,T))\) holds true, Lemma 2.8-(i) applied with \(E=\Omega \times (B_R \setminus \Omega )\) yields that

$$\begin{aligned} W_h \longrightarrow W:=2\frac{\big |u(x,t)-u(y,t)\big |^{p}}{|x-y|^{n+sp}}\quad \text {in}\,\,\,L^1\left( \Omega \times (B_R\setminus \Omega )\times (0,T)\right) \end{aligned}$$

as \(h\searrow 0\). Therefore using the dominated convergence theorem, we conclude that

$$\begin{aligned} \lim \limits _{h\searrow 0}\textbf{IV}=0. \end{aligned}$$
(A.7)

Merging (A.6) with (A.7) in (A.5) and, subsequently, sending \(R \nearrow \infty \), we finally arrive at the resulting convergence (A.3).

Step 3: Taking the limit as \(h\searrow 0\) and \(\delta \searrow 0\).   Since by \(u \geqq m>0\) in \({\mathbb {R}}^n \times (t_0-\varrho ^p,t_0)\), we have

$$\begin{aligned} \lim _{h\searrow 0}\int _\Omega |u|^{p-2}u(0)\left( \frac{1}{h}\int _0^Te^{-\frac{s}{h}}\phi (x,s)\,{\textrm{d}}s\right) \,{\textrm{d}}x=0 \end{aligned}$$

with \(\phi =\varphi ^p\psi _\delta (t)u^{-\varepsilon }\). Therefore, combining this with the observations (A.1)–(A.3) and passing to the limit as \(h\searrow 0\) in the weak formulation (2.10) with the testing function \(\varphi ^p\psi _\delta (t)u^{-\varepsilon }\), we gain

Passing to the limit \(\delta \searrow 0\) combined with Lebegue’s differential theorem and the dominated convergence theorem implies that

$$\begin{aligned}&\int _{B_\varrho (x_0)\times \{t_1\}}u^{p-1-\varepsilon }\varphi ^p\,{\textrm{d}}x+\int _{t_1}^{t_0}\int _{B_\varrho (x_0)}|Du|^pu^{-\varepsilon -1}\varphi ^p\,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\quad \leqq \left( p+\tfrac{2p(p-1)}{\varepsilon (p-1-\varepsilon )}\right) \int _{t_1}^{t_0}\int _{B_\varrho (x_0)}\varphi ^{p-1}|\varphi _t|u^{p-1-\varepsilon }\,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\quad \quad +c\left( \tfrac{p-1-\varepsilon }{p-1}+\tfrac{2}{\varepsilon }\right) \int _{t_1}^{t_0}\int _{B_\varrho (x_0)}|D\varphi |^pu^{p-1-\varepsilon }\,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\quad \quad +c\left( \tfrac{p-1-\varepsilon }{p-1}+\tfrac{2}{\varepsilon }\right) \int _{t_1}^{t_0}\iint _{{\mathbb {R}}^n\times {\mathbb {R}}^n}UK(x,y,t)\left( \varphi ^p(x,t)u(x,t)^{-\varepsilon }\nonumber \right. \\&\left. \qquad -\varphi ^p(y,t)u(y,t)^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t. \end{aligned}$$
(A.8)

Since \(\frac{p-1-\varepsilon }{p-1}<1<p\) and \(\frac{p-1}{p-1-\varepsilon }>1\) the constant

$$\begin{aligned} C(\varepsilon ,p):=c\left( p+\frac{2p(p-1)}{\varepsilon (p-1-\varepsilon )}\right) \end{aligned}$$

bounds the all constants appearing on the right-hand side of (A.8), and we know that \(C(\varepsilon ,p)\) blows up as \(\varepsilon \searrow 0\) or \(\varepsilon \nearrow p-1\). In the first term on the left-hand side of (A.8) we take the supremum over \(t_1 \in (t_0-\varrho ^p, t_0)\), while in the others we let \(t_1\searrow t_0-\varrho ^p\). This finally leads to

$$\begin{aligned}&\sup _{t_1 \in (t_0-\varrho ^p,t_0)}\int _{B_\varrho (x_0)\times \{t_1\}}u^{p-1-\varepsilon }\varphi ^p\,{\textrm{d}}x+\iint _{Q_\varrho ^-(z_0)}|Du|^pu^{-\varepsilon -1}\varphi ^p\,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\quad \leqq C\iint _{Q_\varrho ^-(z_0)}\varphi ^{p-1}|\varphi _t|u^{p-1-\varepsilon }\,{\textrm{d}}x{\textrm{d}}t+C\iint _{Q_\varrho ^-(z_0)}|D\varphi |^pu^{p-1-\varepsilon }\,{\textrm{d}}x{\textrm{d}}t\nonumber \\&\quad +C\int _{t_0-\varrho ^p}^{t_0}\iint _{{\mathbb {R}}^n\times {\mathbb {R}}^n}U(x,y,t)K(x,y,t)\left( \varphi ^p(x,t)u(x,t)^{-\varepsilon }-\varphi ^p(y,t)u(y,t)^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t. \end{aligned}$$
(A.9)

Step 4: Conclusion.   In this final step, we are ready to conclude the whole proof, again by estimating the fractional term appearing on the right-hand side of (A.9). For this, we estimate separately as follows:

$$\begin{aligned} \textbf{V}&:=\int _{t_0-\varrho ^p}^{t_0}\iint _{{\mathbb {R}}^n\times {\mathbb {R}}^n}U(x,y,t)K(x,y,t)\left( \varphi ^p(x,t)u(x,t)^{-\varepsilon }-\varphi ^p(y,t)u(y,t)^{-\varepsilon }\right) \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&=\int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times B_\varrho (x_0) }(\cdots )\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t+2\int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times ({\mathbb {R}}^n \setminus B_\varrho (x_0) )}(\cdots )\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&=:\textbf{V}_1+2\textbf{V}_2, \end{aligned}$$

with the obvious meaning of \(\textbf{V}_1\) and \(\textbf{V}_2\). Applying Lemma 2.4 with \(a=u(y,t)\), \(\tau _1=\varphi (y,t)\) and \(b=u(y,t)\), \(\tau _2=\varphi (x,t)\), the integrand of \(\textbf{V}_1\) is estimated as

$$\begin{aligned}&U(x,y,t)K(x,y,t)\left( \varphi ^p(x,t)u(x,t)^{-\varepsilon }-\varphi ^p(y,t)u(y,t)^{-\varepsilon }\right) \\&\quad \leqq -\Lambda c(p) \zeta (\varepsilon )\frac{\Big |\varphi (x,t)u(x,t)^{\frac{\alpha }{p}}-\varphi (y,t)u(y,t)^{\frac{\alpha }{p}}\Big |^p}{|x-y|^{n+sp}} \\&\quad \quad +\Lambda \left( \zeta (\varepsilon )+1+\varepsilon ^{-(p-1)}\right) \big |\varphi (x,t)-\varphi (y,t)\big |^p\cdot \frac{u(x,t)^\alpha +u(y,t)^\alpha }{|x-y|^{n+sp}} \end{aligned}$$

and therefore

$$\begin{aligned} \textbf{V}_1&\leqq -\Lambda c(p) \zeta (\varepsilon )\int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times B_\varrho (x_0)}\frac{\Big |\varphi (x,t)u(x,t)^{\frac{\alpha }{p}}-\varphi (y,t)u(y,t)^{\frac{\alpha }{p}}\Big |^p}{|x-y|^{n+sp}} \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\quad +\Lambda \left( \zeta (\varepsilon )+1+\varepsilon ^{-(p-1)}\right) \\&\quad \int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times B_\varrho (x_0)}\frac{\big |\varphi (x,t)-\varphi (y,t)\big |^p\left( u(x,t)^\alpha +u(y,t)^\alpha \right) }{|x-y|^{n+sp}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t. \end{aligned}$$

On the other hand, using the positivity of u, the term \(\textbf{V}_2\) is estimated as

$$\begin{aligned} \textbf{V}_2&\leqq \Lambda \int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times ({\mathbb {R}}^n \setminus B_\varrho (x_0))}\frac{U(x,y,t)}{|x-y|^{n+sp}}\varphi ^p(x,t)u(x,t)^{-\varepsilon }\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&=\Lambda \int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times ({\mathbb {R}}^n \setminus B_\varrho (x_0)) \cap \{u(x,t) \,\geqq \,u(y,t)\}}(\cdots )\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\quad +\Lambda \underbrace{\int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times ({\mathbb {R}}^n \setminus B_\varrho (x_0)) \cap \{u(x,t) \,<\,u(y,t)\}}(\cdots )\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t}_{<0} \\&\leqq \Lambda \int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times ({\mathbb {R}}^n \setminus B_\varrho (x_0)) \cap \{u(x,t) \,\geqq \,u(y,t)\}}\frac{(u(x,t)-u(y,t))^{p-1}}{|x-y|^{n+sp}}\varphi ^p(x,t)u(x,t)^{-\varepsilon }\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\leqq \Lambda \int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times ({\mathbb {R}}^n \setminus B_\varrho (x_0)) \cap \{u(x,t) \,\geqq \,u(y,t)\}}\frac{u(x,t)^{p-1-\varepsilon }}{|x-y|^{n+sp}}\varphi ^p(x,t)\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\leqq \Lambda \left( \sup \limits _{x\in \,{\textrm{supp}}\,\varphi (\cdot ,t)}\int _{{\mathbb {R}}^n \setminus B_\varrho (x_0)}\frac{\,{\textrm{d}}y}{|x-y|^{n+sp}}\right) \iint _{Q_\varrho ^-(z_0)}u(x,t)^\alpha \varphi ^p(x,t)\,{\textrm{d}}x{\textrm{d}}t. \end{aligned}$$

Joining the preceding estimates for \(\textbf{V}_1\) and \(\textbf{V}_2\) we get

$$\begin{aligned} \textbf{V}&\leqq -\Lambda c(p) \zeta (\varepsilon )\int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times B_\varrho (x_0)}\frac{\Big |\varphi (x,t)u(x,t)^{\frac{\alpha }{p}}-\varphi (y,t)u(y,t)^{\frac{\alpha }{p}}\Big |^p}{|x-y|^{n+sp}} \,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\quad +\Lambda \left( \zeta (\varepsilon )+1+\varepsilon ^{-(p-1)}\right) \int _{t_0-\varrho ^p}^{t_0}\iint _{B_\varrho (x_0) \times B_\varrho (x_0)}\frac{\big |\varphi (x,t)-\varphi (y,t)\big |^p\left( u(x,t)^\alpha +u(y,t)^\alpha \right) }{|x-y|^{n+sp}}\,{\textrm{d}}x{\textrm{d}}y{\textrm{d}}t\\&\quad +2\Lambda \left( \sup \limits _{x\in \,{\textrm{supp}}\,\varphi (\cdot ,t)}\int _{{\mathbb {R}}^n \setminus B_\varrho (x_0)}\frac{\,{\textrm{d}}y}{|x-y|^{n+sp}}\right) \iint _{Q_\varrho ^-(z_0)}u(x,t)^\alpha \varphi ^p(x,t)\,{\textrm{d}}x{\textrm{d}}t. \end{aligned}$$

Inserting this estimate back to (A.9), we finally arrive at the desired estimate and therefore, the lemma is completely proved. \(\square \)

Appendix B: Proof of Lemmata 3.5 and 3.9

In this final appendix, we report the proof of Lemmata 3.5 and 3.9.

Proof of Lemma 3.5

Since by \(u \geqq m >0\) in \({\mathbb {R}}^n \times (t_1,t_2)\) there holds that, for all \(t \in (t_1,t_2)\)

$$\begin{aligned} {[}u^{p-1}]_h= \frac{1}{h}\int _{0}^{t}e^{\frac{s-t}{h}}u(s)^{p-1}\,{\textrm{d}}s&\geqq m^{p-1}\left( \frac{1}{h}\int _0^te^{\frac{s-t}{h}}\,{\textrm{d}}s\right) \nonumber \\&=m^{p-1}(1-e^{-\frac{t}{h}}). \end{aligned}$$
(B.1)

This together with an elementary estimate \(|\log s| \leqq \dfrac{|s-1|}{\min \{s,1\}}\) for \(s>0\) implies that

$$\begin{aligned} \Big |\log [u^{p-1}]_h-\log u^{p-1}\Big |=\left| \log \left( \frac{[u^{p-1}]_h}{u^{p-1}}\right) \right|&\leqq \frac{\big |[u^{p-1}]_h-u^{p-1}\big |}{\min \{[u^{p-1}]_h,\,u^{p-1}\}} \\&\leqq \frac{1}{m^{2(p-1)}(1-e^{-\frac{t}{h}}) }\big |[u^{p-1}]_h-u^{p-1}\big | \end{aligned}$$

for every \((x,t) \in \Omega _{t_1,t_2}\). Therefore, Lemma 2.8-(ii) concludes that

$$\begin{aligned}{} & {} \Big \Vert \log [u^{p-1}]_h-\log u^{p-1}\Big \Vert _{L^{\frac{p}{p-1}}(\Omega _{t_1,t_2})} \\{} & {} \quad \leqq \frac{1}{m^{2(p-1)}(1-e^{-\frac{t_1}{h}})}\Big \Vert [u^{p-1}]_h-u^{p-1}\Big \Vert _{L^{\frac{p}{p-1}}(\Omega _{t_1,t_2})} \longrightarrow 0, \end{aligned}$$

as desired. \(\square \)

Proof of Lemma 3.9

Again, by (B.1)

$$\begin{aligned} \big |[u^{p-1}]_h^{-1}-u^{1-p}\big | \leqq \frac{1}{m^{2(p-1)}(1-e^{-\frac{t_1}{h}})}\big |[u^{p-1}]_h-u^{p-1}\big | \end{aligned}$$

holds whenever \((x,t) \in \Omega _{t_1,T}\). Hence

$$\begin{aligned} \Big \Vert [u^{p-1}]_h^{-1}-u^{1-p}\Big \Vert _{L^{\frac{p}{p-1}}(\Omega _{t_1,T})}&\leqq \frac{1}{m^{2(p-1)}(1-e^{-\frac{t_1}{h}})}\Big \Vert [u^{p-1}]_h-u^{p-1}\Big \Vert _{L^{\frac{p}{p-1}}(\Omega _{t_1,T})} \longrightarrow 0, \end{aligned}$$

finishing the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, K. Harnack’s estimate for a mixed local–nonlocal doubly nonlinear parabolic equation. Calc. Var. 62, 40 (2023). https://doi.org/10.1007/s00526-022-02378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02378-2

Mathematics Subject Classification

Navigation