Skip to main content
Log in

Some effects of nonlocal diffusion on the solutions of Fisher-KPP equations in disconnected domains

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The question under study is the existence and uniqueness of a non-trivial bounded steady state of a Fisher-KPP equation involving a fractional Laplacian \((-\Delta )^\alpha \) in a fragmented domain with exterior Dirichlet conditions. Of particular interest here is the rigidity on the steady states entailed by the nonlocal dispersion. Our results also provide criteria on the domain for the subsistence of a species subject to a nonlocal diffusion in a fragmented area. Further effects, such as the continuity of this principal eigenvalue with respect to the distance between two compact patches in the one dimensional case, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Eugen. 7(4), 355–369 (1937). https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

    Article  MATH  Google Scholar 

  2. Kolmogorov, A., Petrovskii, I., Piscunov, N.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Byul. Moskovskogo Gos. Univ. 1(6), 1–25 (1938)

    Google Scholar 

  3. Smoller, J.: Shock Waves and Reaction-diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258, p. 581. Springer (1983)

  4. Berestycki, H.: Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. Funct. Anal. 40(1), 1–29 (1981). https://doi.org/10.1016/0022-1236(81)90069-0

    Article  MATH  Google Scholar 

  5. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model: I-“Species persistence. J. Math. Biol. 51, 75–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Comm. Part. Differ. Equ. 32(7–9), 1245–1260 (2007). https://doi.org/10.1080/03605300600987306

    Article  MathSciNet  MATH  Google Scholar 

  7. Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces, Berlin; Heidelberg (2010)

  8. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012). https://doi.org/10.1016/j.bulsci.2011.12.004

    Article  MathSciNet  MATH  Google Scholar 

  9. Berestycki, H., Coville, J., Vo, H.-H.: Persistence criteria for populations with non-local dispersion. J. Math. Biol. 72(7), 1693–1745 (2016). https://doi.org/10.1007/s00285-015-0911-2

    Article  MathSciNet  MATH  Google Scholar 

  10. Berestycki, H., Rossi, L.: Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains. Comm. Pure Appl. Math. 68(6), 1014–1065 (2015). https://doi.org/10.1002/cpa.21536

    Article  MathSciNet  MATH  Google Scholar 

  11. Brasseur, J.: The role of the range of dispersal in a nonlocal fisher-KPP equation: an asymptotic analysis. Commun. Contemp. Math. 23(03), 2050032 (2021). https://doi.org/10.1142/S0219199720500327

    Article  MathSciNet  MATH  Google Scholar 

  12. Abatangelo, L., Felli, V., Noris, B.: On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets. Commun. Contemp. Math. 22, 1950071 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Felli, V., Noris, B., Ognibene, R.: Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region. Calc. Var. Part. Differ. Equ. 60, 1–3 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Léculier, A., Mirrahimi, S., Roquejoffre, J.-M.: Propagation in a fractional reaction–diffusion equation in a periodically hostile environment. J. Dyn. Diff. Equ. 33(2), 863–890 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bogdan, K.: The boundary Harnack principle for the fractional Laplacian. Stud. Math. 123(1), 43–80 (1997). https://doi.org/10.4064/sm-123-1-43-80

    Article  MathSciNet  MATH  Google Scholar 

  16. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl.(9) 101(3), 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Greco, A., Servadei, R.: Hopf’s lemma and constrained radial symmetry for the fractional Laplacian. Math. Res. Lett. 23(3), 863–885 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Silvestre, L.: Hölder estimates for solutions of integro differential equations like the fractional Laplace. Indiana Univ. Math. J. 55, 1155–1174 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62(5), 597–638 (2009). https://doi.org/10.1002/cpa.20274

    Article  MathSciNet  MATH  Google Scholar 

  20. Serrin, J.: Removable singularities of solutions of elliptic equations. Arch. Ration. Mech. Anal. 17, 67–78 (1964). https://doi.org/10.1007/BF00283867

    Article  MathSciNet  MATH  Google Scholar 

  21. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Mathematical Monographs, p. 363 ( 1993). Oxford Science Publications

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Léculier.

Additional information

Communicated by X. Ros-Oton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of Lemma 1

Appendix A Proof of Lemma 1

We provide here the proof of Lemma 1. Before giving the proof, we introduce a new notation:

Notation

For all \(\phi \in H^\alpha _0 (\Omega _{1,2,\mu })\) and \(i \in \left\{ 1,2 \right\} \), we will denote by \(\phi ^i\) the function \(\phi \) restricted to the set \(\Omega _i\) and extended by 0 outside \(\Omega _i\)

$$\begin{aligned}\text {i.e. } \ \phi ^i (x) = \phi (x) 1_{\Omega _i}(x).\end{aligned}$$

We also denote by \({\underline{\lambda }}_i\) the principal eigenvalue of \((-\Delta )^\alpha - I\) in \(\Omega _i\) with 0 exterior Dirichlet conditions.

Remark 4

For all \(\phi \in H^\alpha _0(\Omega _{1,2,\mu })\), we have

$$\begin{aligned}\phi (x) = \phi ^1(x) + \phi ^2 (x) \ \text { and } \ \phi ^i \in H^\alpha _0(\Omega _i) \ \text { for all } \ i \in \left\{ 1,2 \right\} . \end{aligned}$$

Proof

The aim of the proof is to prove that for \(\mu \) large enough, there exists \(C>0\) such that

$$\begin{aligned}\lambda _\alpha (\Omega _{1,2,\mu }) \ge \min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2, \alpha }) - \frac{C}{\mu ^{1+2\alpha }}.\end{aligned}$$

The conclusion follows by the intermediate value Theorem. We start from the Rayleigh quotient defining \({\underline{\lambda }}_{i, \alpha }\):

$$\begin{aligned} {\underline{\lambda }}_{i,\alpha }&= \frac{ \int _{{\mathbb {R}}}\int _{\mathbb {R}} \frac{({\underline{\phi }}_{i,\alpha }(x) - {\underline{\phi }}_{i,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - ({\underline{\phi }}_{i,\alpha }(x))^2 dx }{\int _{\Omega _i} ({\underline{\phi }}_{i,\alpha }(x))^2dx} \\&= \frac{ \int _{\Omega _i}\int _{\mathbb {R}} \frac{({\underline{\phi }}_{i,\alpha }(x) - {\underline{\phi }}_{i,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - ({\underline{\phi }}_{i,\alpha }(x))^2 dx }{\int _{\Omega _i} ({\underline{\phi }}_{i,\alpha }(x))^2 dx} + \frac{ \int _{{\mathbb {R}} \backslash \Omega _i}\int _{\Omega _i} \frac{({\underline{\phi }}_{i,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy dx }{\int _{\Omega _i} ({\underline{\phi }}_{i,\alpha }(x))^2 dx} \\&= \frac{ \int _{\Omega _i}\int _{\Omega _i} \frac{({\underline{\phi }}_{i,\alpha }(x) - {\underline{\phi }}_{i,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - ({\underline{\phi }}_{i,\alpha }(x))^2 dx }{\int _{\Omega _i} ({\underline{\phi }}_{i,\alpha }(x)) ^2 dx} + 2 \frac{ \int _{{\mathbb {R}} \backslash \Omega _i}\int _{\Omega _i} \frac{({\underline{\phi }}_{i,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy dx }{\int _{\Omega _i} ({\underline{\phi }}_{i,\alpha }(x))^2 dx}. \end{aligned}$$

We continue in the same way by rewriting \(\lambda _{1,2,\mu ,\alpha }\):

$$\begin{aligned} \lambda _\alpha (\Omega _{1,2,\mu }) =&\frac{ \int _{{\mathbb {R}}}\int _{\mathbb {R}} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx }{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2dx} \\ =&\frac{\int _{\Omega _{1,2,\mu }}\int _{\mathbb {R}} \frac{(\phi _{1,2,\mu ,\alpha }(x) -\phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx }{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2dx}\\&+ \frac{ \int _{{\mathbb {R}} \backslash \Omega _{1,2,\mu }}\int _{\mathbb {R}} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dydx}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2dx}. \end{aligned}$$

Thus, we have found:

$$\begin{aligned} \lambda _\alpha (\Omega _{1,2,\mu })= \frac{1}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2dx} \left( I_1+I_2 \right) . \end{aligned}$$
(A.1)

We rewrite \(I_1\) and \(I_2\) in order to involving the expression of \({\underline{\lambda }}_{1,\alpha }\) and \({\underline{\lambda }}_{2,\alpha }\). We begin by rewriting \(I_1\):

$$\begin{aligned} I_1&= \int _{\Omega _{1,2,\mu }}\int _{\mathbb {R}} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx \\&= \int _{\Omega _1} \int _{\mathbb {R}} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx \\&\quad \quad + \int _{\Omega _2} \int _{\mathbb {R}} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx \\&= \int _{\Omega _1} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx \\&\quad \quad + \int _{\Omega _1} \int _{{\mathbb {R}} \backslash \Omega _{1,2,\mu }} \frac{(\phi _{1,2,\mu ,\alpha }(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dy dx \\&\quad \quad + \int _{\Omega _2} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }(x))^2 dx \\&\quad \quad + \int _{\Omega _2} \int _{{\mathbb {R}} \backslash \Omega _{1,2,\mu }} \frac{(\phi _{1,2,\mu ,\alpha }(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&\quad \quad +2 \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&= \int _{\Omega _1} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(x) - \phi _{1,2,\mu ,\alpha }^1(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }^1(x))^2 dx \\&\quad \quad + \quad \int _{\Omega _1} \int _{{\mathbb {R}} \backslash \Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&\quad \quad + \int _{\Omega _2} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(x) - \phi _{1,2,\mu ,\alpha }^2(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }^2(x))^2 dx \\&\quad \quad + \int _{\Omega _2} \int _{{\mathbb {R}} \backslash \Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dy dx +2 \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&\quad \quad - \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx - \int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx. \end{aligned}$$

Finally, we find that

$$\begin{aligned} \begin{aligned} I_1&= \int _{\Omega _1} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(x) - \phi _{1,2,\mu ,\alpha }^1(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }^1(x))^2 dx \\&\quad \quad + \int _{\Omega _1} \int _{{\mathbb {R}} \backslash \Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&\quad \quad + \int _{\Omega _2} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(x) - \phi _{1,2,\mu ,\alpha }^2(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }^2(x))^2 dx \\&\quad \quad + \int _{\Omega _2} \int _{{\mathbb {R}} \backslash \Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&\quad \quad +2 \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }(x) - \phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dydx \\&\quad \quad - \int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx - \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx. \end{aligned} \end{aligned}$$
(A.2)

With similar computations, we find that for \(I_2\):

$$\begin{aligned} \begin{aligned} I_2&= \int _{\Omega _1} \int _{{\mathbb {R}} \backslash \Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(y))^2}{\vert x-y\vert ^{1+2\alpha }}dxdy +\int _{\Omega _2} \int _{{\mathbb {R}} \backslash \Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(y))^2}{\vert x-y\vert ^{1+2\alpha }}dxdy \\&\quad \quad - \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(y))^2}{\vert x-y\vert ^{1+2\alpha }}dxdy - \int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(y))^2}{\vert x-y\vert ^{1+2\alpha }}dxdy. \end{aligned} \end{aligned}$$
(A.3)

Combining (A.2) and (A.3) in (A.1), we deduce

$$\begin{aligned} \lambda _\alpha (\Omega _{1,2,\mu })&= \frac{2 \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }(x) -\phi _{1,2,\mu ,\alpha }(y))^2}{\vert x-y\vert ^{1+2\alpha }}dydx }{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} \\&\quad \quad + \frac{\int _{\Omega _1} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(x) - \phi _{1,2,\mu ,\alpha }^1(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }^1(x))^2 dx + 2 \int _{\Omega _1} \int _{{\mathbb {R}} \backslash \Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^1(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dydx}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx}\\&\quad \quad + \frac{\int _{\Omega _2} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(x) - \phi _{1,2,\mu }^2(y))^2}{\vert x-y\vert ^{1+2\alpha }}dy - (\phi _{1,2,\mu ,\alpha }^2(x))^2 dx + 2 \int _{\Omega _2} \int _{{\mathbb {R}} \backslash \Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^2(x) )^2}{\vert x-y\vert ^{1+2\alpha }}dydx}{\int _{\Omega } (\phi _{1,2,\mu ,\alpha }(x))^2 dx} \\&\quad -\frac{ 2 \int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx + 2\int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx }{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} \\&\ge \frac{\int _{\Omega _1} (\phi _{1,2,\mu ,\alpha }^1(x))^2 dx }{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} {\underline{\lambda }}_{1,\alpha } + \frac{\int _{\Omega _2} (\phi _{1,2,\mu ,\alpha }^2(x))^2 dx }{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} {\underline{\lambda }}_{2,\alpha } \\&\quad -\frac{ 2\int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx + 2\int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} \\&\ge \min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2,\alpha }) -\frac{ 2\int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx + 2\int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} . \end{aligned}$$

But, for \(i \in \left\{ 1,2 \right\} \), we have for all \(x \in \Omega _i\) and \( y \in \Omega _{3-i}\)

$$\begin{aligned}2\mu < \vert x-y\vert \Rightarrow -\frac{1}{(2\mu )^{1+2\alpha }} \le -\frac{1}{\vert x-y\vert ^{1+2\alpha }}.\end{aligned}$$

We deduce that

$$\begin{aligned} \lambda _\alpha (\Omega _{1,2,\mu })&\ge \min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2,\alpha }) \\&\qquad -\frac{ 2\int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx + 2\int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\vert x-y\vert ^{1+2\alpha }} dydx}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} \\&\ge \min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2,\alpha }) \\&\qquad -\frac{ 2\int _{\Omega _1} \int _{\Omega _2} \frac{(\phi _{1,2,\mu ,\alpha }^1(x))^2}{\mu ^{1+2\alpha }} dydx + 2\int _{\Omega _2} \int _{\Omega _1} \frac{(\phi _{1,2,\mu ,\alpha }^2(x))^2}{\mu ^{1+2\alpha }} dydx}{\int _{\Omega _{1,2,\mu }} (\phi _{1,2,\mu ,\alpha }(x))^2 dx} \\&\ge \min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2,\alpha }) - \frac{4A}{(2\mu )^{1+2\alpha }} \underset{\mu \rightarrow + \infty }{\longrightarrow }\min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2,\alpha }). \end{aligned}$$

Since \(\min ({\underline{\lambda }}_{1,\alpha }, {\underline{\lambda }}_{2,\alpha })>0\), we deduce the existence of \(\mu _1>0\) such that for all \(\mu > \mu _1\),

$$\begin{aligned}\lambda _\alpha (\Omega _{1,2,\mu }) > 0.\end{aligned}$$

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Léculier, A., Roquejoffre, JM. Some effects of nonlocal diffusion on the solutions of Fisher-KPP equations in disconnected domains. Calc. Var. 62, 30 (2023). https://doi.org/10.1007/s00526-022-02374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02374-6

Navigation