Skip to main content
Log in

A two-dimensional Keller–Segel–Navier–Stokes system with logarithmic sensitivity: generalized solutions and classical solutions

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the following Keller–Segel-fluid model

$$\left\{ \begin{array}{ll} n_t+u\cdot \nabla n=\Delta n-\chi \nabla \cdot (\frac{n}{c}\nabla c),&{}x\in \Omega ,~t>0,\\ c_t+u\cdot \nabla c=\Delta c-c+n,&{}x\in \Omega ,~t>0,\\ u_t+(u\cdot \nabla )u=\Delta u+\nabla P+n\nabla \Phi ,&{}x\in \Omega ,~t>0, \end{array}\right. (\star )$$

in a smoothly bounded planar domain. It is shown that under no-flux/no-flux/Dirichlet boundary conditions and for appropriately regular initial data, an associated initial-boundary problem possesses a globally defined solution in a suitably generalized sense whenever \(\chi >0.\) Beyond this, for the same initial-boundary problem, a uniquely classical solution can be established for any \(\chi \in (0,\chi _{*})\) for some \(\chi _{*}>1,\) which extends a previous result derived from a completely alternative approach under a stronger hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahn, J., Kang, K., Lee, J.: Global well-posedness of logarithmic Keller–Segel type systems. J. Differ. Equ. 287, 185–211 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biler, P.: Global solutions to some parabolic-elliptic systems of chemotaxis. Adv. Math. Sci. Appl. 9, 347–359 (1999)

    MathSciNet  MATH  Google Scholar 

  3. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Models Methods Appl. Sci. 25, 1663–1763 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Black, T.: Global generalized solutions to a parabolic-elliptic Keller–Segel system with singular sensitivity. Discrete Contin. Dyn. Syst. S 13, 119–137 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Black, T., Lankeit, J., Mizukami, M.: A Keller–Segel-fluid system with singular sensitivity: Generalized solutions. Math. Meth. Appl. Sci. 42, 3002–3020 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Black, T., Lankeit, J., Mizukami, M.: Singular sensitivity in a Keller–Segel-fluid system. J. Evol. Equ. 18, 561–581 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cieślak, T., Laurençot, P.: Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 437–446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasi-linear Keller–Segel system in higher dimensions. J. Differ. Equ. 252, 5832–5851 (2012)

    Article  MATH  Google Scholar 

  9. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258, 2080–2113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Friedman, A.: Partial Differential Equations. Holt, Rinehart & Winston, New York (1969)

    MATH  Google Scholar 

  11. Fujie, K.: Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 424, 675–684 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fujie, K., Ito, A., Winkler, M., Yokota, T.: Stabilization in a chemotaxis model for tumor invasion. Discrete Contin. Dyn. Syst. 36, 151–169 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Fujie, K., Senba, T.: Global existence and boundedness in a parabolic-elliptic Keller–Segel system with general sensitivity. Discret. Contin. Dyn. Syst. B 21, 81–102 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Fujie, K., Senba, T.: A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system. Nonlinearity 31, 1639–1672 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giga, Y.: The Stokes operator in \(L_{r}\) spaces. Proc. Japan Acad. S. 2, 85–89 (1981)

    MATH  Google Scholar 

  16. Haroske, D.D., Triebel, H.: Distributions, Sobolev Spaces, Elliptic Equations. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2008)

    MATH  Google Scholar 

  17. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math, vol. 840. Springer, Berlin (1981)

  18. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Sc. Norm. Super. Pisa Cl. Sci. 24, 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  19. Horstmann, D., Winkler, M.: Boundedness versus blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MATH  Google Scholar 

  20. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic-parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, J., Wu, H., Zheng, S.: Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains. Asympt. Anal. 92, 249–258 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: A theoretical analysis. J. Theoret. Biol. 30, 235–248 (1971)

    Article  MATH  Google Scholar 

  24. Lankeit, J.: A new approach toward boundedness in a two-dimensional parabolic chemotaxis system with singular sensitivity. Math. Meth. Appl. Sci. 39, 394–404 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lankeit, J.: Long-term behaviour in a chemotaxis-fluid system with logistic source. Math. Mod. Meth. Appl. Sci. 26, 2071–2109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lankeit, J., Winkler, M.: A generalized solution concept for the Keller–Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differ. Equ. Appl. 24, Art. 49 (2017)

  27. Li, Y., Li, Y.: Finite-time blow-up in higher dimensional fully-parabolic chemotaxis system for two species. Nonlinear Anal. 109, 72–84 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York-Heidelberg,: Translated from the French by P, p. 181. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band (1972)

  29. Mizukami, M., Yokota, T.: A unified method for boundedness in fully parabolic chemotaxis systems with signal-dependent sensitivity. Math. Nachr. 290, 2648–2660 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nagai, T., Senba, T.: Global existence and blow-up of radial solutions to a parabolic-elliptic system of chemotaxis. Adv. Math. Sci. Appl. 8, 145–156 (1998)

    MathSciNet  MATH  Google Scholar 

  31. Osaki, K., Yagi, A.: Finite dimensional attractors for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Stinner, C., Winkler, M.: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Anal. Real World Appl. 12, 3727–3740 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Temam, R.: Navier–Stokes Equations. Theory and Numerical Analysis. Stud. Math. Appl. 2, North-Holland, Amsterdam (1977)

  34. Winkler, M.: Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MATH  Google Scholar 

  35. Winkler, M.: Does repulsion-type directional preference in chemotactic migration continue to regularize Keller–Segel systems when coupled to the Navier–Stokes equations ?. Nonlinear Differ. Equ. Appl. 26, Art. 48 (2019)

  36. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Winkler, M.: Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math. Methods Appl. Sci. 34, 176–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. Henri. Poincaré, Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Winkler, M.: Large-data global generalized solutions in a chemotaxis system with tensor-valued sensitivities. SIAM J. Math. Anal. 47, 3092–3115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Winkler, M.: Small-mass solutions in the two-dimensional Keller–Segel system coupled to the Navier–Stokes equations. SIAM J. Math. Anal. 52, 2041–2080 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Unlimited growth in logarithmic Keller–Segel systems. J. Differ. Equ. 309, 74–97 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M., Yokota, T.: Stabilization in the logarithmic Keller–Segel system. Nonlinear Anal. 170, 123–141 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, X., Zheng, S.: Global boundedness of solutions in a parabolic-parabolic chemotaxis system with singular sensitivity. J. Math. Anal. Appl. 443, 445–452 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhigun, A.: Generalised supersolutions with mass control for the Keller–Segel system with logarithmic sensitivity. J. Math. Anal. Appl. 467, 1270–1286 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express his thanks to the anonymous referee for his helpful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 11901298), and is partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20221508).

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11901298), and is partially supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20221508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Liu.

Additional information

Communicated by Laszlo Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J. A two-dimensional Keller–Segel–Navier–Stokes system with logarithmic sensitivity: generalized solutions and classical solutions. Calc. Var. 62, 23 (2023). https://doi.org/10.1007/s00526-022-02371-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02371-9

Mathematics Subject Classification

Navigation