Skip to main content
Log in

Harnack inequality and self-similar solutions for fully nonlinear fractional parabolic equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We find bounds for the principal eigenvalue and eigenfunction associated to the existence of self-similar solutions to a fully nonlinear parabolic problem. In contrast with the local case, the upper and lower bounds for the eigenfunction are of the same polynomial order \(|x|^{-(N+2s)}\). In order to accomplish this we prove a Harnack inequality for general nonlocal elliptic equations with zero order terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S., Trokhimtchouk, M.: Long-time asymptotics for fully nonlinear homogeneous parabolic equations. Calc. Var. Partial Differ. Equ. 38(3–4), 521–540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barrios, B., García-Melián, J., Quaas, A.: A Note on the Monotonicity of Solutions for Fractional Equations in half-space. Proc. AMS (2019). https://doi.org/10.1090/proc/14469

    Article  MATH  Google Scholar 

  3. Barrios, B., Peral, I., Soria, F., Valdinoci, E.: A Widder’s type theorem for the Heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213, 629–650 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bass, R.F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357(2), 837–850 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass, R.F., Levin, D.A.: Harnack inequalities for jump processes. Potential Anal. 17(4), 375–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki, H., Nirenberg, L., Varadhan, S.: The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Commun. Pure Appl. Math. 47(1), 47–92 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berestycki, H., Hamel, F., Rossi, L.: Liouville-type results for semilinear elliptic equations in unbounded domains. Ann. Mat. Pura Appl. 186(3), 469–507 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blumenthal, R.M., Getoor, R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95, 263–273 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bogdan, K., Byczkowski, T.: Potential theory for the s-stable Schrödinger operator on bounded Lipschitz domains. Studia Math. 133(1), 53–92 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bonforte, M., Vázquez, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincare Anal. Non Lineaire 31, 23–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: Regularity theory For nonlocal integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009)

    Article  MATH  Google Scholar 

  14. ChangLara, H., Dávila, G.: Regularity for solutions of non local, non symmetric equations. Ann. Inst. H. Poincaé Anal. Non Linéaire 29(6), 833–859 (2012)

    Article  Google Scholar 

  15. Dávila, G., Quaas, A., Topp, E.: Continuous viscosity solutions for nonlocal Dirichlet problems with coercive gradient terms. Math. Ann. (2016). https://doi.org/10.1007/s00208-016-1481-3

    Article  MATH  Google Scholar 

  16. Dávila, G., Quaas, A., Topp, E.: Existence, nonexistence and multiplicity results for fully nonlinear nonlocal Dirichlet problems. J. Differ. Equ. 266(9), 5971–5997 (2019)

    Article  MATH  Google Scholar 

  17. Fabes, E.B., Kenig, C.E., Serapioni, R.P.: The local regularity of solutions of degenerate elliptic equations. Commun. Partial Differ. Equ. 7(1), 77–116 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Felmer, P., Quaas, A.: Fundamental solutions and Liouville type theorems for nonlinear integral operators. Adv. Math. 226(3), 2712–2738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Meneses, R., Quaas, A.: Fujita type exponent for fully nonlinear parabolic equations and existence results. J. Math. Anal. Appl. 376, 514–527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Serra, J.: \(C^{ +\alpha }\) regularity for concave nonlocal fully nonlinear elliptic equations with rough kernels. Calc. Var. 54, 3571 (2015). https://doi.org/10.1007/s00526-015-0914-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Tan, J., Xiong, J.: A Harnack inequality for fractional Laplace equations with lower order terms. Discrete Contin. Dyn. Syst. 31(3), 975–983 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

G. D. was partially supported by Fondecyt Grant No. 1190209. A. Q. was partially supported by Fondecyt Grant No. 1190282 and Programa Basal, CMM. U. de Chile. E. T. was partially supported by Conicyt PIA Grant No. 79150056, and Fondecyt Iniciación No. 11160817.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Quaas.

Additional information

Communicated by A. Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we collect some technical results that are used above.

For \(R > 0\) denote \(w_{s,R}(y) = (R + |y|)^{-(N + 2s)}\) and we omit the subscript R when \(R = 1\). Also denote

$$\begin{aligned} \Vert u \Vert _{L^1(w_{s, R})} = \int _{\mathbb {R}^N} u(y) w_{s,R}(y)dy. \end{aligned}$$

Lemma 5.1

Let \(b \in L^\infty _{loc}(B_{2R})\). Assume that u is a bounded, nonnegative viscosity solution of

$$\begin{aligned} \mathcal I(u) + b(x) \cdot Du \le c_1 u \quad \text{ in } \ B_{2R}. \end{aligned}$$

Then, there exists a constant \(C > 0\) such that

$$\begin{aligned} \Vert u \Vert _{L^1(w_{s, R})} \le C\Big ( R^{1-2s} ||b||_{L^\infty (B_{2R})} + R^{-2s}||c||_{L^\infty (B_{2R})} \Big ) \inf _{B_R} u+C||u||_{L^\infty (B_{2R})} \end{aligned}$$

Proof

We assume \(R =1\) and conclude the general result by considering the usual rescaling \(u_R(x) = u(Rx)\). We follow the ideas of [2].

Let \(\varphi \in C_0^\infty (B_{3/2})\) such that \(0 \le \varphi \le 1\) and \(\varphi \equiv 1\) in \(B_1\). If u is nontrivial, the strong maximum principle implies that \(u > 0\) in \(B_2\). Then, there exists \(0 < t \le \inf _{B_1} u\) such that \(u \ge t\varphi \) in \(\mathbb {R}^N\). Moreover, enlarging t if necessary, we can consider a point \(z_0 \in B_{3/2}\) for which \(u(z_0) = t\varphi (z_0)\). Then, the viscosity inequality for u allows us to write

$$\begin{aligned} t \mathcal {I}[B_{1/4}(z_0)](\varphi , z_0) + \mathcal {I}[B_{1/4}(z_0)^c](u,z_0) - C t \Vert b\Vert _\infty \le C t \varphi (z_0), \end{aligned}$$

where \(C > 0\) just depends on \(c_1\) and universal constants. From here, by the smoothness of \(\varphi \) it is direct to see the existence of a universal constants \(C > 0\) just depending on Ns such that

$$\begin{aligned} \gamma \int \limits _{B_{1/4}(z_0)^c} \frac{u(y)}{|z_0 - y|^{N + 2s}}dy \le C \Gamma \Vert u \Vert _{L^\infty (B_2)} + C t. \end{aligned}$$

The result follows by rearranging terms and using the definition of t. \(\square \)

Next lemma states a known fact that solutions of equation of the type (5.1) are Hölder continuous and localizes the \(L^\infty \) dependence of the right hand side.

Lemma 5.2

Let \(\Theta \subset \mathbb {R}^N\) be a domain and assume \(B_{R}\subset \Theta \). Let u be a solution of

$$\begin{aligned} \mathcal I u+b \cdot Du = \lambda u \quad \text{ in } \ \Theta . \end{aligned}$$

Then, there exists \(\alpha \in (0,1)\) and a constant \(C=C_R\) not depending on the domain such that

$$\begin{aligned} {[}u]_{C^\alpha (B_{R/2})} \le C_R(1 + \Vert u\Vert _{L^\infty (B_R)} + \Vert u\Vert _{L^1(w_s)}). \end{aligned}$$

Proof

Without loss of generality we can assume that \(R=1\) and then conclude by scaling. Note first that u satisfies (in the viscosity sense)

$$\begin{aligned} \mathcal {M}^+ u - C_1 |Du|&\le C_2,\\ \mathcal {M}^- u + C_1 |Du|&\ge -C_2, \end{aligned}$$

in \(B_1\), for some constants \(C_1, C_2 > 0\). It is direct to check that the function \(\tilde{u} := u(x) \textbf{1}_{B_4}(x)\), \(x \in \mathbb {R}^N\), satisfies the inequalities

$$\begin{aligned}&\mathcal {M}^+ \tilde{u} - C_1 |D \tilde{u}| \le C_2 + C \Vert u \Vert _{L^1(w_s)} \quad \text{ in } \ B_1 \\&\mathcal {M}^- \tilde{u} + C_1 |D \tilde{u}| \ge -C_2 \quad \text{ in } \ B_1, \end{aligned}$$

where the constant \(C > 0\) in the right-hand side of the first inequality just depends on Ns and the ellipticity constants. Standard regularity theory asserts the existence of \(\alpha \in (0,1)\) and a constant \(C > 0\) such that

$$\begin{aligned} {[}u]_{C^\alpha (B_{1/2})} = [\tilde{u}]_{C^\alpha (B_{1/2})} \le C(1+ \Vert u\Vert _{L^\infty (B_1)} + \Vert u \Vert _{L^1(w_s)}) \end{aligned}$$

\(\square \)

Lemma 5.3

Let \(\alpha < \frac{N + 2s}{2s}\). Let u be a bounded viscosity solution of

$$\begin{aligned} \mathcal {M}^+ u + \frac{1}{2s} x \cdot Du \ge -\alpha u\quad \text{ in }\quad B_{R}, \end{aligned}$$

with \(u\le C_0|x|^{-(N + 2s)}\) for some \(C_0 > 0\), and \(u\le 0\) in \(B_R\). Then there exists \(R_0\) so that if \(R>R_0\), then \(u\le 0\) in \(\mathbb {R}^N\).

Proof

The result for \(\alpha \le 0\) is direct. Assume \(0 < \alpha \) and let \(\beta \) such that \(2s \alpha< \beta < N + 2s\) and denote \(\epsilon = \beta - 2s\alpha \). Consider \(\Phi \) the function of Lemma 4.3 defined with such an exponent \(\beta \).

Take \(R_0 > r_c\) as in Lemma 4.3 and fix c small enough in order to have

$$\begin{aligned} \mathcal {M}^+ \Phi + \frac{1}{2s} x \cdot \Phi \le -\frac{\beta - \epsilon /2}{2s} \Phi \quad \text{ in } \ B_{r_c}^c. \end{aligned}$$

Suppose now by contradiction that for some \(R \ge R_0\), there exists \(x_R\) with \(|x_R|>R\) such that \(u(x_R)>0\). Then, since \(u \le 0\) in \(B_R\) and u decays faster than \(\Phi \) at infinity, there exists \(\eta > 0\) such that \(u \le \eta \Phi \) in \(\mathbb {R}^N \setminus \{ 0 \}\) and a point \(x \in B_{R}^c\) such that \(u(x) = \eta \Phi (x)\).

Then, using \(\eta \Phi \) as a test function for u and the estimate above, we obtain

$$\begin{aligned} \alpha \ge \frac{\beta - \epsilon /2}{2s}, \end{aligned}$$

but this is a contradiction. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dávila, G., Quaas, A. & Topp, E. Harnack inequality and self-similar solutions for fully nonlinear fractional parabolic equations. Calc. Var. 62, 16 (2023). https://doi.org/10.1007/s00526-022-02366-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02366-6

Mathematics Subject Classification

Navigation