Skip to main content
Log in

Classification of finite Morse index solutions to the polyharmonic Hénon equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We present Liouville-type results for stable solutions and finite Morse index solutions of the polyharmonic Hénon elliptic equation

$$\begin{aligned} (-\Delta )^mu=|x|^a|u|^{p-1}u,\quad \mathrm {in}\ {\mathbb {R}}^n, \end{aligned}$$

where \( m\ge 3 \), \( p>1 \), \( a\ge 0 \) and n is a large dimension. To construct the classification theorem of homogeneous stable solutions, we exhibit a concise and explicit form for a critical exponent \( p_{a}(n,m) \) which is known as the Joseph-Lundgren exponent when taking \( a=0 \). Based on this, we obtain the desired results by establishing the monotonicity formula, applying some energy estimates and finally using a blow-down analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability:

The manuscript has no associated data.

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. Dover, New York (1965)

    MATH  Google Scholar 

  2. Caffarelli, L., Gidas, B., Spruck, J.: Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Commun. Pure Appl. Math. 42, 271–297 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dancer, E.N., Du, Y., Guo, Z.: Finite Morse index solutions of an elliptic equation with supercritical exponent. J. Differ. Equ. 250, 3281–3310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dávila, J., Dupaigne, L., Wang, K., Wei, J.: A monotonicity formula and a Liouville-type Theorem for a fourth order supercritical problem. Adv. Math. 258, 240–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. del Pino, M., Musso, M., Pacard, F., Pistoia, A.: Large energy entire solutions for the Yamabe equation. J. Differ. Equ. 251, 2568–2597 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. del Pino, M., Musso, M., Pacard, F., Pistoia, A.: Torus action on \( S^n \) and sign changing solutions for conformally invariant equations. Annali della Scuola Normale Superiore di Pisa 12(5), 209–237 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Farina, A.: On the classification of solutions of the Lane-Emden equation on unbounded domains of \(\mathbb{R}^N \). J. Math. Pures Appl. 87, 537–561 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fazly, M.: Liouville theorems for the polyharmonic Hénon-Lane-Emden system. Methods Appl. Anal. 21, 265–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fleming, W.H.: On the oriented Plateau problem. Rend. Circ. Mat. Palermo 11, 69–90 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gazzola, F., Grunau, H.-Ch.: Radial entire solutions for supercritical biharmonic equations. Math. Ann. 334, 905–936 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guo, Y., Li, B., Wei, J.: Large energy entire solutions for the Yamabe problem of polyharmonic operator. J. Differ. Equ. 254(1), 199–228 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, L.: Liouville-type theorems for the fourth order nonlinear elliptic equation. J. Differ. Equ. 256, 1817–1846 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harrabi, A., Rahal, B.: On the Sixth-Order Joseph-Lundgren Exponent. Ann. Henri Poincaré 18, 1055–1094 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harrabi, A., Zaidi, C.: Finite Morse index solutions of the Hénon Lane-Emden equation. J. Inequal. Appl. 281 (2019)

  16. Joseph, D.D., Lundgren, T.S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Rational Mech. Anal. 49, 241–269 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, S., Wei, J., Zou, W.: Decomposition of polyharmonic operator and classification of homogeneous stable solutions. Proc. Am. Math. Soc. 149, 2957–2968 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, S., Wei, J., Zou, W.: On a transcendental equation involving quotients of Gamma function. Proc. Am. Math. Soc. 145, 2623–2637 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luo, S., Wei, J., Zou, W.: Monotonicity formula and classification of stable solutions to polyharmonic Lane-Emden equations. Int. Math. Res. Notices 1–52 (2021)

  20. Luo, S., Wei, J., Zou, W.: On the triharmonic Lane-Emden equation. Preprint arXiv:1607.04719 (2016)

  21. Luo, S., Wei, J., Zou, W.: On finite Morse index solutions to the quadharmonic Lane-Emden equation. Preprint arXiv:1609.01269 (2016)

  22. Musso, M., Wei, J.: Nondegeneracy of nodal solutions to the critical Yamabe problem. Commun. Math. Phys. 340(3), 1049–1107 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pacard, F.: Partial regularity for weak solutions of a nonlinear elliptic equations. Manuscr. Math. 79, 161–172 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Polácik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems, I. Elliptic equations and systems. Duke Math. J. 139(3), 555–579 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313(2), 207–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senping Luo.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Communicated by Andrea Mondino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research of W. Ao is supported by NSFC 12071357, 12131017 and 12221001.

The research of S. Luo is supported by NSFC 12001253, 12261045 and double thousands plan of Jiangxi(jxsq2019101048).

Appendix A The generalized Joseph-Lundgren exponent

Appendix A The generalized Joseph-Lundgren exponent

In this section, we consider the inequality

$$\begin{aligned} pJ_{0,m}(k)-J_{0,m}(\tau )>0, \end{aligned}$$
(A.1)

where \( k=\frac{2m+a}{p-1} \), \( \tau =\frac{n-2m}{2} \). We wish to prove the existence and give an expression of the generalized Joseph-Lundgren exponent for polyharmonic Hénon equation (1.1), and investigate some of its properties. Throughout this section, we assume that \( n>2m \), \( a\ge 0 \) and \( m\ge 1 \).

1.1 The concise expression of the critical exponent

Since Gamma function holds the recurrence relation

$$\begin{aligned} \Gamma (s+1)=s\Gamma (s), \end{aligned}$$

by the definition of \( J_{t,m} \) (see (2.1)), we have

$$\begin{aligned}J_{0,m}(x) = 2^{2m} \frac{\Gamma \left( \frac{n}{2}-\frac{x}{2} \right) \Gamma \left( m+\frac{x}{2} \right) }{ \Gamma \left( \frac{x}{2} \right) \Gamma \left( \frac{n-2m}{2} - \frac{x}{2} \right) } .\end{aligned}$$

Hence (A.1) is equivalent to the following inequality:

$$\begin{aligned} p\frac{\Gamma \left( \frac{n}{2}-\frac{k}{2} \right) \Gamma \left( m+\frac{k}{2}\right) }{\Gamma \left( \frac{k}{2} \right) \Gamma \left( \frac{n-2m}{2}-\frac{k}{2} \right) } - \left( \frac{\Gamma \left( \frac{n+2m}{4} \right) }{\Gamma \left( \frac{n-2m}{4} \right) } \right) ^2 >0. \end{aligned}$$
(A.2)

We have assumed that p is supercritical, i.e. \( p>\frac{n+2m+2a}{n-2m} \). The purpose of this section is to determine the range of p such that the inequality (A.1) holds.

We consider the equation with variable p:

$$\begin{aligned} p\frac{\Gamma \left( \frac{n}{2}-\frac{k}{2} \right) \Gamma \left( m+\frac{k}{2}\right) }{\Gamma \left( \frac{k}{2} \right) \Gamma \left( \frac{n-2m}{2}-\frac{k}{2} \right) } - \left( \frac{\Gamma \left( \frac{n+2m}{4} \right) }{\Gamma \left( \frac{n-2m}{4} \right) } \right) ^2 =0. \end{aligned}$$
(A.3)

Since \( k = \frac{2m+a}{p-1} \), we have that (A.3) is equivalent to

$$\begin{aligned} \begin{aligned}&\frac{\Gamma \left( \frac{2m+a+k}{2}+1 \right) \Gamma \left( \frac{2m+k}{2}\right) \Gamma \left( \frac{n}{2}-\frac{k}{2} \right) }{ \Gamma \left( \frac{2m+a+k}{2}\right) \Gamma \left( \frac{k}{2} +1 \right) \Gamma \left( \frac{n-2m}{2}-\frac{k}{2} \right) } - \left( \frac{\Gamma \left( \frac{n+2m}{4} \right) }{\Gamma \left( \frac{n-2m}{4} \right) } \right) ^2=0. \end{aligned} \end{aligned}$$
(A.4)

In order to put this equation in a more symmetric and convenient form, we take a key transformation similar as that introduced in [18]:

$$\begin{aligned} k:=\frac{n-(2m+2+a)}{2} + \lambda \sqrt{n}, \end{aligned}$$
(A.5)

transforming (A.4) to the following function w.r.t. \( \lambda \):

$$\begin{aligned} \begin{aligned}&\frac{ \Gamma \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) \Gamma \left( \frac{1}{4} n + \frac{1}{2} m +\frac{1}{4}a + \frac{1}{2} - \frac{1}{2} \lambda \sqrt{n} \right) }{ \Gamma \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) \Gamma \left( \frac{1}{4}n - \frac{1}{2}m - \frac{1}{4}a + \frac{1}{2} + \frac{1}{2} \lambda \sqrt{n} \right) }\\&\quad \quad \times \frac{ \Gamma \left( \frac{1}{4} n + \frac{1}{2} m -\frac{1}{4}a - \frac{1}{2} + \frac{1}{2} \lambda \sqrt{n} \right) }{ \Gamma \left( \frac{1}{4}n - \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2} \lambda \sqrt{n} \right) }=\left( \frac{\Gamma \left( \frac{1}{4} n+ \frac{1}{2} m \right) }{ \Gamma \left( \frac{1}{4} n - \frac{1}{2} m \right) } \right) ^2. \end{aligned} \end{aligned}$$
(A.6)

Notice that

$$\begin{aligned} p> & {} \frac{n+2m+2a}{n-2m} \quad \Leftrightarrow \quad 0<k<\frac{n-2m}{2} \\ \Leftrightarrow \quad \lambda _1:= & {} \frac{1}{2}\left( -\frac{n-2m}{\sqrt{n}}+\frac{2+a}{\sqrt{n}}\right)<\lambda <\frac{2+a}{2\sqrt{n}} =: \lambda _2, \end{aligned}$$

so we only need to consider (A.4) in the interval \( \left( 0,\frac{n-2m}{2} \right) \) i.e. find the solution of the equation (A.6) in the interval \( \left( \lambda _1,\lambda _2 \right) \).

To obtain further properties of equation (A.6), we introduce the logarithmic derivative of the gamma function, known as the Digamma Function

$$\begin{aligned} \Psi (x)=\frac{{\mathrm d}}{{\mathrm {d}x}} \left( \ln (\Gamma (x)) \right) = \frac{\Gamma '(x)}{\Gamma }, \end{aligned}$$

and recall the following expansion (see[1], p. 260)

$$\begin{aligned} \Psi ^{(i)}(x)=(-1)^{i+1}i!\sum _{j=0}^{\infty } \frac{1}{(x+j)^{i+1}},\quad i=1,2,\cdots ; x\ne 0,-1,-2,\cdots . \end{aligned}$$
(A.7)

We take the logarithm on both sides of equation (A.6), then it becomes

$$\begin{aligned} \begin{aligned}&f(n,m,a,\lambda )\\&\quad :=\ln \Gamma \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) + \ln \Gamma \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) \\&\quad \quad + \ln \Gamma \left( \frac{1}{4}n + \frac{1}{2}m - \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) - \ln \Gamma \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) \\&\quad \quad - \ln \Gamma \left( \frac{1}{4}n - \frac{1}{2}m - \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) - \ln \Gamma \left( \frac{1}{4}n - \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) \\&\quad \quad - 2\ln \Gamma \left( \frac{1}{4}n + \frac{1}{2}m \right) -2\ln \Gamma \left( \frac{1}{4}n - \frac{1}{2}m \right) =0. \end{aligned} \end{aligned}$$
(A.8)

Taking derivative w.r.t \( \lambda \), we have

$$\begin{aligned} \begin{aligned}&g(n,m,a,\lambda )\\&\quad :=\frac{d}{d\lambda } f(n,m,a,\lambda ) \\&\quad = \frac{1}{2}\sqrt{n} \left[ \Psi \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) - \Psi \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) \right. \\&\quad \quad +\Psi \left( \frac{1}{4}n + \frac{1}{2}m - \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) -\Psi \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) \\&\quad \quad \left. -\Psi \left( \frac{1}{4}n - \frac{1}{2}m - \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) + \Psi \left( \frac{1}{4}n - \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) \right] . \end{aligned} \end{aligned}$$
(A.9)

We first show that \( f(n,m,a,\lambda ) \) is a concave function w.r.t \( \lambda \) in \( \big (\lambda _1,\lambda _2\big ) \).

Lemma A.1

Assume that \( \lambda _1<\lambda < \lambda _2 \), then \( g(n,m,a,\lambda ) \) is decreasing w.r.t \( \lambda \).

Proof

This can be obtained directly by calculation.

$$\begin{aligned} \begin{aligned} g'(\lambda ):=&\frac{d}{d\lambda } g(n,m,a,\lambda )\\ =&\frac{1}{4}n \left[ \Psi ' \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) + \Psi ' \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) \right. \\&+\Psi ' \left( \frac{1}{4}n + \frac{1}{2}m - \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) -\Psi ' \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) \\&\left. -\Psi ' \left( \frac{1}{4}n - \frac{1}{2}m - \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) - \Psi ' \left( \frac{1}{4}n - \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) \right] . \end{aligned} \end{aligned}$$

Taking derivative w.r.t m,

$$\begin{aligned} \begin{aligned} \frac{d}{dm}g'(\lambda ) =&\frac{1}{8}n \left[ \underbrace{\Psi '' \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) }_{T_1} + \underbrace{\Psi '' \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) }_{T_2}\right. \\&+ \underbrace{\Psi '' \left( \frac{1}{4}n + \frac{1}{2}m - \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) }_{T_3} - \underbrace{\Psi '' \left( \frac{1}{4}n + \frac{1}{2}m + \frac{1}{4}a - \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) }_{T_4}\\&\left. + \underbrace{\Psi '' \left( \frac{1}{4}n - \frac{1}{2}m - \frac{1}{4}a + \frac{1}{2} + \frac{1}{2}\lambda \sqrt{n} \right) }_{T_5} + \underbrace{\Psi '' \left( \frac{1}{4}n - \frac{1}{2}m + \frac{1}{4}a + \frac{1}{2} - \frac{1}{2}\lambda \sqrt{n} \right) }_{T_6}\right] . \end{aligned} \end{aligned}$$

By (A.7), \( \Psi '' <0 \) and \( \Psi '' \) is increasing. Therefore, we have

$$\begin{aligned} T_3-T_4<0, \end{aligned}$$

and

$$\begin{aligned} T_1+T_2+T_5+T_6<0. \end{aligned}$$

This implies that \( g'(\lambda ) \) is decreasing w.r.t m. Then we take \( m=1 \), \( g'(\lambda ) \) becomes

$$\begin{aligned} \begin{aligned} g'(\lambda ,m=1) =&\frac{1}{4}n \left[ \Psi '\left( \frac{1}{4}n + \frac{1}{4}a + 1 + \frac{1}{2}\lambda \sqrt{n} \right) - \Psi '\left( \frac{1}{4}n + \frac{1}{4}a + \frac{1}{2}\lambda \sqrt{n} \right) \right. \\&\left. + \Psi '\left( \frac{1}{4}n + \frac{1}{4}a + 1 - \frac{1}{2}\lambda \sqrt{n} \right) - \Psi '\left( \frac{1}{4}n + \frac{1}{4}a - \frac{1}{2}\lambda \sqrt{n} \right) \right] . \end{aligned} \end{aligned}$$

Since \( \Psi ' \) is decreasing, we obtain that \( g'(\lambda ,m=1) <0 \). Therefore, for any \( m\ge 1 \), there holds \( g'(\lambda )<0 \). \(\square \)

The following lemmas investigate the behaviors of the function \( f(n,m,a,\lambda ) \) w.r.t the variable \( \lambda \) and n.

Lemma A.2

There holds

$$\begin{aligned} g\left( n,m,a,\lambda \right) |_{\lambda =\lambda _2}<0. \end{aligned}$$
(A.10)

Proof

Since

$$\begin{aligned} \begin{aligned}&g\left( n,m,a,\lambda \right) |_{\lambda =\lambda _2}\\&\quad = \frac{1}{2}\sqrt{n}\left[ \Psi \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+1 \right) -\Psi \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a \right) + \Psi \left( \frac{1}{4}n-\frac{1}{2}m \right) \right. \\&\left. \qquad - \Psi \left( \frac{1}{4}n-\frac{1}{2}m+1 \right) \right] \\&\quad =\left. \frac{1}{2}\sqrt{n}\left[ \Psi \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+x \right) - \Psi \left( \frac{1}{4}n-\frac{1}{2}m+x \right) \right] \right| _{x=0}^{x=1}, \end{aligned} \end{aligned}$$

and the fact that \( \Psi ' \) is decreasing, we have

$$\begin{aligned} \begin{aligned}&\frac{d}{dx}\left[ \Psi \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+x \right) - \Psi \left( \frac{1}{4}n-\frac{1}{2}m+x \right) \right] \\&\quad = \Psi '\left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+x \right) - \Psi '\left( \frac{1}{4}n-\frac{1}{2}m+x \right) <0. \end{aligned} \end{aligned}$$

Thus we obtain the inequality (A.10). \(\square \)

Lemma A.3

There holds

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _2}>0. \end{aligned}$$
(A.11)

Proof

This can be checked by computation.

$$\begin{aligned} \begin{aligned}&f(n,m,a,\lambda )|_{\lambda = \lambda _2} \\&\quad = \ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+1 \right) - \ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a \right) - \ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m+1 \right) \\&\qquad + \ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m \right) \\&\quad = \left. \left[ \ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+x \right) -\ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m+x \right) \right] \right| _0^1 \end{aligned} \end{aligned}$$

Since \( \Psi '>0 \), we have

$$\begin{aligned} \begin{aligned}&\frac{d}{dx}\left[ \ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+x \right) -\ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m+x \right) \right] \\&\quad =\Psi \left( \frac{1}{4}n+\frac{1}{2}m+\frac{1}{2}a+x \right) -\Psi \left( \frac{1}{4}n-\frac{1}{2}m+x \right) >0. \end{aligned} \end{aligned}$$

Then we obtained (A.11). \(\square \)

Lemma A.4

When taking \( \lambda =\lambda _1 \), \( f(n,m,a,\lambda ) \) is decreasing w.r.t. the variable n.

Proof

 

$$\begin{aligned} \begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1} =&\ln \Gamma \left( m+\frac{1}{2}a+1\right) + \ln \Gamma \left( \frac{1}{2}n\right) +\ln \Gamma \left( m\right) -\ln \Gamma \left( m+\frac{1}{2}a\right) \\&-\ln \Gamma \left( \frac{1}{2}n-m\right) -2\ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m\right) +2\ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m\right) . \end{aligned} \end{aligned}$$

Taking derivative w.r.t. n,

$$\begin{aligned}&\frac{d}{dn}\Big [ f(n,m,a,\lambda )|_{\lambda =\lambda _1} \Big ]\\&= \frac{1}{2}\left[ \Psi \left( \frac{1}{2}n\right) - \Psi \left( \frac{1}{2}n-m\right) - \Psi \left( \frac{1}{4}n+\frac{1}{2}m\right) + \Psi \left( \frac{1}{4}n-\frac{1}{2}m\right) \right] \\&= \left. \left[ \Psi \left( \frac{1}{2}n-m+x\right) -\Psi \left( \frac{1}{4}n-\frac{1}{2}m+x\right) \right] \right| ^m_0. \end{aligned}$$

Since \( \Psi ''<0 \), we have

$$\begin{aligned} \Psi '\left( \frac{1}{2}n-m+x\right) -\Psi '\left( \frac{1}{4}n-\frac{1}{2}m+x\right) <0, \end{aligned}$$

i.e. \( \Psi \left( \frac{1}{2}n-m+x\right) -\Psi \left( \frac{1}{4}n-\frac{1}{2}m+x\right) \) is decreasing w.r.t. x. Thus,

$$\begin{aligned} \frac{d}{dn}\Big [ f(n,m,a,\lambda )|_{\lambda =\lambda _1} \Big ]<0. \end{aligned}$$

\(\square \)

Lemma A.5

There hold that

$$\begin{aligned} f(n,m,a,\lambda )|_{n=2m+4,\lambda =\lambda _1}>0, \end{aligned}$$
(A.12)

and

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1}\rightarrow -\infty \text { as } n\rightarrow +\infty . \end{aligned}$$
(A.13)

Proof

(1) Taking \( n=2m+4,\lambda =\lambda _1 \), then

$$\begin{aligned} f(n,m,a,\lambda )= & {} \ln \Gamma \left( m+\frac{1}{2}a+1\right) +\ln \Gamma (m+2)+\ln \Gamma (m)\\&-\ln \Gamma \left( m+\frac{1}{2}a\right) -2\ln \Gamma (m+1)\\= & {} \left. \left[ \ln \Gamma \left( m+\frac{1}{2}a+x\right) -\ln \Gamma (1+x) + \ln \Gamma \left( m+1+x\right) \right. \right. \\&\left. \left. -\ln \Gamma (m+x) \right] \right| ^1_0. \end{aligned}$$

Since \( \Psi '>0 \), we have

$$\begin{aligned} \Psi \left( m+\frac{1}{2}a+1\right) - \Psi (1+x)>0 , \quad \Psi (m+1+x) - \Psi (1+x)>0, \end{aligned}$$

and then

$$\begin{aligned} \begin{aligned}&\frac{d}{dx} \left[ \ln \Gamma \left( m+\frac{1}{2}a+x\right) -\ln \Gamma (1+x) + \ln \Gamma \left( m+1+x\right) -\ln \Gamma (m+x) \right] \\&\quad = \Psi \left( m+\frac{1}{2}a+x\right) -\Psi (1+x) + \Psi \left( m+1+x\right) -\Psi (m+x)>0. \end{aligned} \end{aligned}$$

Hence we obtain (A.12).

(2) For n satisfying \( n>2m \) and \( n=4l \), \( l\in {\mathbb {N}}\), by direct computation,

$$\begin{aligned} \begin{aligned}&\frac{\Gamma \left( \frac{1}{2}n+1\right) \Gamma ^2\left( \frac{1}{4}n-\frac{1}{2}m\right) }{\Gamma \left( \frac{1}{2}n-m\right) \Gamma ^2\left( \frac{1}{4}n+\frac{1}{2}m\right) }\\&\quad = \frac{\left( \frac{1}{2}n-m\right) \left( \frac{1}{2}n-m+1\right) \cdots \left( \frac{1}{2}n-1\right) \frac{1}{2}n}{\left( \frac{1}{4}n-\frac{1}{2}m\right) ^2\left( \frac{1}{4}n-\frac{1}{2}m+1\right) ^2\cdots \left( \frac{1}{4}n+\frac{1}{2}m-1\right) ^2}\\&\quad = \frac{O(n^{m+1})}{O(n^{2m})}. \end{aligned} \end{aligned}$$

Thus, with \( m\ge 1 \) and n large enough, we have

$$\begin{aligned} \ln \frac{\Gamma \left( \frac{1}{2}n+1\right) \Gamma ^2\left( \frac{1}{4}n-\frac{1}{2}m\right) }{\Gamma \left( \frac{1}{2}n-m\right) \Gamma ^2\left( \frac{1}{4}n+\frac{1}{2}m\right) } <0. \end{aligned}$$

that is,

$$\begin{aligned} 2\ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m \right) - \ln \Gamma \left( \frac{1}{2}n-m \right) -2\ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m \right) < -\ln \Gamma \left( \frac{1}{2}n+1 \right) . \end{aligned}$$

Therefore,

$$\begin{aligned} \begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1} =&\ln \Gamma \left( m+\frac{1}{2}a+1\right) + \ln \Gamma \left( m\right) - \ln \Gamma \left( m+\frac{1}{2}a\right) + \ln \Gamma \left( \frac{1}{2}n\right) \\&-\ln \Gamma \left( \frac{1}{2}n-m\right) -2\ln \Gamma \left( \frac{1}{4}n+\frac{1}{2}m\right) +2\ln \Gamma \left( \frac{1}{4}n-\frac{1}{2}m\right) \\ \le&\ln \Gamma \left( m+\frac{1}{2}a+1\right) + \ln \Gamma \left( m\right) - \ln \Gamma \left( m+\frac{1}{2}a\right) + \ln \Gamma \left( \frac{1}{2}n\right) \\&- \ln \Gamma \left( \frac{1}{2}n+1\right) \\ =&\ln \Gamma \left( m+\frac{1}{2}a+1\right) + \ln \Gamma \left( m\right) - \ln \Gamma \left( m+\frac{1}{2}a\right) -\ln n, \end{aligned} \end{aligned}$$

for \( n=4l \), \( l\in {\mathbb {N}}\). Furthermore, by Lemma A.4, \( f(n,m,a,\lambda )|_{\lambda =\lambda _1} \) is decreasing w.r.t n, hence for \( n >2m \), we prove (A.13). \(\square \)

By Lemma A.4 and Lemma A.5, we can immediately conclude that

Corollary A.1

The equation w.r.t the variable n

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1}=0, \end{aligned}$$

i.e.

$$\begin{aligned} \frac{2m+a}{2m}\frac{\Gamma \left( m\right) \Gamma \left( \frac{1}{2}n\right) }{\Gamma \left( \frac{n-2m}{2}\right) } - \frac{\Gamma \left( \frac{n+2m}{4}\right) ^2}{\Gamma \left( \frac{n-2m}{4}\right) ^2} = 0. \end{aligned}$$
(A.14)

has merely one solution for \( n>2m \), which we denote by \( n_0(m,a) \). Furthermore,

$$\begin{aligned} 2m+4<n_0(m,a).\end{aligned}$$

Corollary A.2

Assume that \( n>n_0(m,a) \), then there holds

$$\begin{aligned} g(n,m,a,\lambda )|_{\lambda =\lambda _1}>0. \end{aligned}$$

Proof

Assume that \( g(n,m,a,\lambda )|_{\lambda =\lambda _1}\le 0 \), then by Lemma A.1 and Lemma A.2,

$$\begin{aligned} g(n,m,a,\lambda )<0 \quad \text { for any } \lambda \in \left( \lambda _1,\lambda _2\right) . \end{aligned}$$

This implies that \( f(n,m,a,\lambda ) \) is decreasing w.r.t. \( \lambda \) for any \( \lambda \in \left( \lambda _1,\lambda _2\right) \). Then, combining with (A.11), we have

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1}>f(n,m,a,\lambda )|_{\lambda =\lambda _2}>0. \end{aligned}$$

This contradicts the fact that

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1}<0 \quad \text { for any } n>n_0(m,a).\end{aligned}$$

Hence the prove of the conclusion is complete. \(\square \)

With above results, we immediately have the following propositions.

Proposition A.1

Assume that \( n>2m \), \( m\ge 1 \), \( a\ge 0 \). \( n_0(m,a) \) is defined as the unique solution of (A.14).

  1. (1)

    If \( n> n_0(m,a) \), then for any fixed nma, there exists only one solution \( \lambda _{n,m,a} \in \big ( \lambda _1,\lambda _2 \big ) \) such that

    $$\begin{aligned} f(n,m,a,\lambda )=0. \end{aligned}$$

    Moreover, there holds

    $$\begin{aligned} f(n,m,a,\lambda ) \left\{ \begin{aligned}< 0, \quad \ \text { if } \lambda _1<\lambda<\lambda _{n,m,a},\\ > 0, \quad \ \text { if } \lambda _{n,m,a}<\lambda <\lambda _2. \end{aligned} \right. \end{aligned}$$
  2. (2)

    If \( n \le n_0(m,a) \), then the inequality

    $$\begin{aligned} f(n,m,a,\lambda )>0 \end{aligned}$$

    holds for any \( \lambda \in (\lambda _1,\lambda _2) \).

Proof

(1) If \( n > n_0(m,a) \), then by Lemma A.1, Lemma A.2 and Corollary A.2, there exists \( \lambda _0 \in \big ( \lambda _1,\lambda _2 \big ) \) such that

$$\begin{aligned} \frac{d}{d\lambda }f(n,m,a,\lambda )|_{\lambda =\lambda _0}=0, \end{aligned}$$

and

$$\begin{aligned}&\frac{d}{d\lambda }f(n,m,a,\lambda )>0 \quad \text { for } \lambda _1<\lambda<\lambda _0; \\&\frac{d}{d\lambda }f(n,m,a,\lambda )<0 \quad \text { for } \lambda _0<\lambda <\lambda _2. \end{aligned}$$

These imply that \( f(n,m,a,\lambda ) \) is increasing in \( \big ( \lambda _1,\lambda _0 \big ) \) and decreasing in \( \big (\lambda _0,\lambda _2\big ) \). By Lemma A.3, Lemma A.4 and Corollary A.1, we have

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _1} <0, \end{aligned}$$

and

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _0}> f(n,m,a,\lambda )|_{\lambda =\lambda _2} > 0. \end{aligned}$$

Then there exists a unique \( \lambda _{n,m,a} \in \big ( \lambda _1,\lambda _0 \big ) \) such that

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =\lambda _{n,m,a}} = 0. \end{aligned}$$

Furthermore,

$$\begin{aligned} f(n,m,a,\lambda )< 0 \quad \text { for } \lambda _1<\lambda <\lambda _{n,m,a}, \end{aligned}$$

and

$$\begin{aligned} f(n,m,a,\lambda ) > 0 \quad \text { for } \lambda _{n,m,a}<\lambda <\lambda _2. \end{aligned}$$

(2) If \( n < n_0(m,a) \), since \( g(n,m,a,\lambda ) \) is decreasing for \( \lambda _1<\lambda <\lambda _2 \) (by Lemma A.2), and

$$\begin{aligned}&\frac{d}{d\lambda }f(n,m,a,\lambda )|_{\lambda =\lambda _2} < 0, \\&f(n,m,a,\lambda )|_{\lambda =\lambda _1}> 0, \\&f(n,m,a,\lambda )|_{\lambda =\lambda _2} > 0, \end{aligned}$$

then whether \( g(n,m,a,\lambda )|_{\lambda =\lambda _1} \) is negative or not, there holds

$$\begin{aligned} f(n,m,a,\lambda ) > 0 \quad \text { for any } \lambda _1<\lambda <\lambda _2. \end{aligned}$$

\(\square \)

Recalling the transform \( k=\frac{n-(2m+2+a)}{2}+\lambda \sqrt{n} \), we can immediately return to k and p, and have the following

Proposition A.2

Assume that \( n>2m \), \( m\ge 1 \), \( a\ge 0 \). \( n_0(m,a) \) is defined as the unique solution of (A.14).

  1. (1)

    If \( n> n_0(m,a) \), then the inequality (A.1) holds if

    $$\begin{aligned} 0< \frac{n-(2m+2+a)}{2}+\lambda _{n,m,a}\sqrt{n}< k < \frac{n-2m}{2}, \end{aligned}$$

    i.e.

    $$\begin{aligned} \frac{n+2m+2a}{n-2m}< p < 1+\frac{4m+a}{n-2m-2-a+2\lambda _{n,m,a}\sqrt{n}}. \end{aligned}$$
  2. (2)

    If \( n \le n_0(m,a) \), then the inequality (A.1) holds for any k satisfying

    $$\begin{aligned} 0< k < \frac{n-2m}{2}, \end{aligned}$$

    i.e.

    $$\begin{aligned} \frac{n+2m+2a}{n-2m}< p <+\infty . \end{aligned}$$

This proposition directly yields Proposition 1.1.

1.2 On the estimate \( \lambda _{n,m,a}>-(1+\frac{a}{2}) \)

In this part, we prove the estimate that \( -\lambda _{n,m,a}<1+\frac{a}{2} \), which is critical in the proof of monotonicity formula in Sect. 3.

Proposition A.3

Assume that \( n>2m \), \( m\ge 1 \), \( a\ge 0 \) and that \( \lambda _{n,m,a} \in \big ( \lambda _1,\lambda _2 \big ) \) is defined by Proposition A.1, then there holds

$$\begin{aligned} \lambda _{n,m,a}>-\left( 1+\frac{a}{2}\right) . \end{aligned}$$

Proof

This result is equivalent to the following inequality

$$\begin{aligned} f(n,m,a,\lambda )|_{\lambda =-\left( 1+\frac{a}{2}\right) } <0. \end{aligned}$$
(A.15)

If \( \lambda _1=\frac{1}{2}\left( -\frac{n-2m}{\sqrt{n}}+\frac{2+a}{\sqrt{n}} \right) \ge -\left( 1+\frac{a}{2}\right) \), (A.15) holds immediately.

It remains to consider the case \( \lambda _1 < -\left( 1+\frac{a}{2}\right) \), that is, \( n-\sqrt{n}(2+a)>2+a+2m. \) Let \( \frac{1}{2}\sqrt{n}=t \), then t satisfies

$$\begin{aligned} t^2-\left( 1+\frac{a}{2} \right) t > \frac{1}{2}+\frac{1}{4}a+\frac{1}{2}m. \end{aligned}$$

We set

$$\begin{aligned} \begin{aligned}&H(t,m,a)\\&\quad :=f(n,m,a,\lambda )|_{\lambda =-\left( 1+\frac{a}{2}\right) }\\&\quad = \ln \Gamma \left( t^2+\frac{1}{2}m+\frac{1}{4}a+\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) + \ln \Gamma \left( t^2+\frac{1}{2}m+\frac{1}{4}a+\frac{1}{2}+\left( 1+\frac{a}{2}\right) t \right) \\&\quad \quad + \ln \Gamma \left( t^2+\frac{1}{2}m-\frac{1}{4}a-\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) - \ln \Gamma \left( t^2+\frac{1}{2}m+\frac{1}{4}a-\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \\&\quad \quad - \ln \Gamma \left( t^2-\frac{1}{2}m-\frac{1}{4}a+\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) - \ln \Gamma \left( t^2-\frac{1}{2}m+\frac{1}{4}a+\frac{1}{2}+\left( 1+\frac{a}{2}\right) t \right) \\&\quad \quad - 2\ln \Gamma \left( t^2+\frac{1}{2}m\right) + 2\ln \Gamma \left( t^2-\frac{1}{2}m\right) . \end{aligned} \end{aligned}$$

Now we prove the conclusion by induction.

(1) When \( m=1 \),

$$\begin{aligned} \begin{aligned} H(t,m,a) =&\ln \Gamma \left( t^2+1+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) - \ln \Gamma \left( t^2+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \\&+ \ln \Gamma \left( t^2+1+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) - \ln \Gamma \left( t^2+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) \\&+ 2\ln \Gamma \left( t^2-\frac{1}{2} \right) - 2\ln \Gamma \left( t^2+\frac{1}{2} \right) \\ =&\ln \frac{\Gamma \left( t^2+1+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \Gamma \left( t^2+1+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) \Gamma ^2\left( t^2-\frac{1}{2} \right) }{ \Gamma \left( t^2+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \Gamma \left( t^2+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) \Gamma ^2\left( t^2+\frac{1}{2} \right) }\\ =&\ln \frac{ \left( t^2+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \left( t^2+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) }{ \left( t^2-\frac{1}{2} \right) ^2 } \end{aligned} \end{aligned}$$

Since

$$\begin{aligned} t^2>\frac{1}{2}+\frac{1}{4}a+\frac{1}{2}m+\left( 1+\frac{a}{2}\right) t>1+\frac{1}{4}a, \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned}&\left( t^2+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \left( t^2+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) - \left( t^2-\frac{1}{2} \right) ^2\\&\quad = -\left( 1+\frac{a}{2} \right) \left[ \frac{1}{2}at^2 + \frac{1}{4}\left( 1 - \frac{a}{2} \right) \right] \\&\quad< -\left( 1+\frac{a}{2} \right) \left[ \frac{1}{2}a\left( 1+\frac{1}{4}a \right) + \frac{1}{4}\left( 1 - \frac{a}{2} \right) \right] \\&\quad = -\frac{1}{16}(a+2)^2(a+1)<0. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} H(t,m,a)|_{m=1}<0. \end{aligned}$$

(2) When \( m=2 \),

$$\begin{aligned} \begin{aligned} H(t,m,a) =&\ln \Gamma \left( t^2 + \frac{3}{2} + \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) + \ln \Gamma \left( t^2 + \frac{3}{2} + \frac{1}{4}a + \left( 1+\frac{a}{2}t \right) \right) \\&+ \ln \Gamma \left( t^2 + \frac{1}{2} - \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) - \ln \Gamma \left( t^2 + \frac{1}{2} + \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) \\&- \ln \Gamma \left( t^2 - \frac{1}{2} - \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) - \ln \Gamma \left( t^2 - \frac{1}{2} + \frac{1}{4}a + \left( 1+\frac{a}{2}t \right) \right) \\&- 2\ln \Gamma (t^2+1) + 2\ln \Gamma (t^2-1)\\ =&\ln \left[ \frac{1}{{ (t^2-1)^2 t^4 }} \left( t^2 + \frac{1}{2} + \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) \left( t^2 - \frac{1}{2} + \frac{1}{4}a + \left( 1+\frac{a}{2}t \right) \right) \right. \\&\times \left. \left( t^2 + \frac{1}{2} + \frac{1}{4}a + \left( 1+\frac{a}{2}t \right) \right) \left( t^2 - \frac{1}{2} - \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) \right] . \end{aligned} \end{aligned}$$

By computation,

$$\begin{aligned} \begin{aligned} G(t,a) :=&\left( t^2 + \frac{1}{2} + \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) \left( t^2 - \frac{1}{2} + \frac{1}{4}a + \left( 1+\frac{a}{2}t \right) \right) \\&\times \left( t^2 + \frac{1}{2} + \frac{1}{4}a + \left( 1+\frac{a}{2}t \right) \right) \left( t^2 - \frac{1}{2} - \frac{1}{4}a - \left( 1+\frac{a}{2}t \right) \right) - t^4(t^2-1)^2\\ =&\underbrace{A_6 t^6 + A_5 t^5 + A_4 t^4 + A_3 t^3 }_{T_1} + \underbrace{A_2 t^2 + A_1 t + A_0}_{T_2}. \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} A_6&:= -\frac{1}{2} a(a+3),&A_5&= -\frac{1}{4} a(a+2),\\ A_4&:= \frac{1}{16} \big ( a^4+6a^3+16a^2+20a-8 \big ), \\ A_3&:= \frac{1}{16}a^2(a+2)^2,&\ A_2&= -\frac{1}{32}(a+2)^2(3a+4), \\ A_1&:= -\frac{1}{64}a(a+2)^3,&A_0&= -\frac{1}{256}(a+2)^3(a-2). \end{aligned} \end{aligned}$$

Since

$$\begin{aligned} t^2>\left( 1+\frac{a}{2}\right) t+\frac{3}{2}+\frac{1}{4}a, \end{aligned}$$

and

$$\begin{aligned} A_6 \le 0, \quad A_2<0, \end{aligned}$$

we have

$$\begin{aligned} \begin{aligned} T_1<&A_6\left[ \left( 1+\frac{a}{2}\right) t+\frac{3}{2}+\frac{1}{4}a \right] t^4 + A_5 t^5 + A_4 t^4 + A_3 t^3 = B_5 t^5 + B_4 t^4 + A_3 t^3\\ <&B_5\left[ \left( 1+\frac{a}{2}\right) t+\frac{3}{2}+\frac{1}{4}a \right] t^3 + B_4 t^4 + A_3 t^3 = C_4 t^4 + C_3 t^3, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} B_5&:= -\frac{1}{4}a(a+2)(a+4)\le 0,\\ B_4&:= \frac{1}{16}(a+2)(a-2)(a^2+4a+2),\\ C_4&:= -\frac{1}{16}(a+2)(a^3+10a^2+22a+4)<0,\\ C_3&:= -\frac{1}{2} a(a+2)(a+3)\le 0, \end{aligned} \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} T_2 <&A_2\left[ \left( 1+\frac{a}{2}\right) t+\frac{3}{2}+\frac{1}{4}a \right] + A_1 t + A_0 = B_1 t + B_0, \end{aligned} \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} B_1&:= -\frac{1}{16}(a+2)^3(a+1)<0,\\ B_0&:= -\frac{1}{256}(a+2)^2 \left( 7a^2+44a+44 \right) <0. \end{aligned} \end{aligned}$$

Therefore,

$$\begin{aligned} T_1+T_2<0, \end{aligned}$$

that is,

$$\begin{aligned} G(t,a)<0, \end{aligned}$$

which implies that

$$\begin{aligned} H(t,m,a)|_{m=2}<0. \end{aligned}$$

(3) Assume that for any \( l\ge 2 \), there holds

$$\begin{aligned} H(t,m,a)|_{m=l-1}<0. \end{aligned}$$

Taking \( m=l+1 \), then

$$\begin{aligned} \begin{aligned} H(t,m,a) =&\ln \Gamma \left( t^2+\frac{1}{2}(l+1)+\frac{1}{4}a+\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \\&+ \ln \Gamma \left( t^2+\frac{1}{2}(l+1)+\frac{1}{4}a+\frac{1}{2}+\left( 1+\frac{a}{2}\right) t \right) \\&+ \ln \Gamma \left( t^2+\frac{1}{2}(l+1)-\frac{1}{4}a-\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \\&- \ln \Gamma \left( t^2+\frac{1}{2}(l+1)+\frac{1}{4}a-\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \\&- \ln \Gamma \left( t^2-\frac{1}{2}(l+1)-\frac{1}{4}a+\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \\&- \ln \Gamma \left( t^2-\frac{1}{2}(l+1)+\frac{1}{4}a+\frac{1}{2}+\left( 1+\frac{a}{2}\right) t \right) \\&- 2\ln \Gamma \left( t^2+\frac{1}{2}(l+1)\right) + 2\ln \Gamma \left( t^2-\frac{1}{2}(l+1)\right) . \end{aligned} \end{aligned}$$

To prove that \( H(t,m,a)|_{m=l+1} <0 \) is to show that the following inequality holds:

$$\begin{aligned}&\tilde{H}(l+1)\\&:=\frac{\Gamma \left( t^2+\frac{1}{2}(l+1)+\frac{1}{4}a+\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \Gamma \left( t^2+\frac{1}{2}(l+1)+\frac{1}{4}a+\frac{1}{2}+\left( 1+\frac{a}{2}\right) t \right) }{\Gamma \left( t^2+\frac{1}{2}(l+1)+\frac{1}{4}a-\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \Gamma \left( t^2-\frac{1}{2}(l+1)-\frac{1}{4}a+\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) }\\&\times \frac{\Gamma \left( t^2+\frac{1}{2}(l+1)-\frac{1}{4}a-\frac{1}{2}-\left( 1+\frac{a}{2}\right) t \right) \Gamma ^2\left( t^2-\frac{1}{2}(l+1)\right) }{\Gamma \left( t^2-\frac{1}{2}(l+1)+\frac{1}{4}a+\frac{1}{2}+\left( 1+\frac{a}{2}\right) t \right) \Gamma ^2\left( t^2+\frac{1}{2}(l+1)\right) } <1, \end{aligned}$$

which, by the recurrence relation of Gamma function, is equivalent to

$$\begin{aligned} \begin{aligned}&\frac{\left( t^2+\frac{1}{2}l+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \left( t^2+\frac{1}{2}l+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) \left( t^2+\frac{1}{2}l-1-\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) }{\left( t^2+\frac{1}{2}l-1+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) }\\&\qquad \times \frac{\left( t^2-\frac{1}{2}l-\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \left( t^2-\frac{1}{2}l+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) }{ \left( t^2-\frac{1}{2}l-\frac{1}{2} \right) ^2 \left( t^2+\frac{1}{2}l-\frac{1}{2} \right) ^2 }\tilde{H}(l-1)<1. \end{aligned} \end{aligned}$$

Since

$$\begin{aligned} H(t,m,a)|_{m=l-1}<0 \quad \text { i.e. } \tilde{H}(l-1)<1, \end{aligned}$$

and

$$\begin{aligned} \frac{t^2+\frac{1}{2}l-1-\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t}{t^2+\frac{1}{2}l-1+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t} \le 1, \end{aligned}$$

we only need to show that

$$\begin{aligned} \begin{aligned} G(t,l,a):=&\left( t^2+\frac{1}{2}l+\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \left( t^2+\frac{1}{2}l+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) \\&\times \left( t^2-\frac{1}{2}l-\frac{1}{4}a-\left( 1+\frac{a}{2}\right) t \right) \left( t^2-\frac{1}{2}l+\frac{1}{4}a+\left( 1+\frac{a}{2}\right) t \right) \\&- \left( t^2-\frac{1}{2}l-\frac{1}{2} \right) ^2 \left( t^2+\frac{1}{2}l-\frac{1}{2} \right) ^2 <0. \end{aligned} \end{aligned}$$

By computation,

$$\begin{aligned} G(t,l,a) = D_6 t^6 + D_5 t^5 + D_4 t^4 + D_3 t^3 + D_2 t^2 + D_1 t + D_0, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} D_6&:= -\frac{1}{2}a(a+3), \quad \quad \quad \quad \quad \quad D_5 := -\frac{1}{4}a(a+2),\\ D_4&:= \frac{1}{16} \Big ( a^4+6a^3+16a^2-4(l-6)a-8 \Big ),\\ D_3&:= \frac{1}{16} a(a+2)\Big ( a^2+2a+4(1-l) \Big ),\\ D_2&:= -\frac{1}{32} \Big ( \big (2l+1\big )a^3+4l\big (l+3\big )a^2+4l\big (5l+2\big )a+32l^2-16 \Big ),\\ D_1&:= -\frac{1}{64} a(a+2)(a+2l)^2, \quad \quad D_0 := \frac{1}{256} \big ( -a^4 -4la^3 +16l^3a +32l^2 -16 \big ). \end{aligned} \end{aligned}$$

Noticing that

$$\begin{aligned} t^2>\left( 1+\frac{a}{2}\right) t+\frac{1}{2}+\frac{1}{4}a+\frac{1}{2}\big (l+1\big ) = \left( 1+\frac{a}{2}\right) t + 1 + \frac{1}{4}a + \frac{1}{2}l, \end{aligned}$$

as the case \( m=2 \), we can similarly compute that

$$\begin{aligned} G(t,l,a)< & {} D_6\left[ \left( 1+\frac{a}{2}\right) t+1+\frac{1}{4}a+\frac{1}{2}l\right] t^4 + D_5 t^5 + D_4 t^4 \\&+ D_3 t^3 + D_2 t^2 + D_1 t + D_0 \\= & {} E_5 t^5 + E_4 t^4 + D_3 t^3 + D_2 t^2 + D_1 t + D_0\\< & {} E_5 \left[ \left( 1+\frac{a}{2}\right) t+1+\frac{1}{4}a+\frac{1}{2}l\right] t^3 + E_4 t^4 + D_3 t^3 + D_2 t^2 + D_1 t + D_0\\= & {} F_4 t^4 + F_3 t^3 + D_2 t^2 + D_1 t + D_0\\< & {} F_4 t^4 + F_3 \left[ \left( 1+\frac{a}{2}\right) t+1+\frac{1}{4}a+\frac{1}{2}l\right] t + D_2 t^2 + D_1 t + D_0\\= & {} F_4 t^4 + P_2 t^2 + P_1 t + D_0 \\< & {} F_4 t^4 + P_2 \left[ \left( 1+\frac{a}{2}\right) t+1+\frac{1}{4}a+\frac{1}{2}l\right] + P_1 t + D_0\\= & {} F_4 t^4 + Q_1 t + Q_0, \end{aligned}$$

where

$$\begin{aligned} \begin{aligned} E_5 :=&-\frac{1}{4}a(a+2)(a+4) \le 0,\\ E_4 :=&\frac{1}{16}\Big ( a^4+4a^3+\big ( 2-4l \big )a^2 - 16la-8 \Big ),\\ F_4 :=&-\frac{1}{16}\Big ( a^4+12a^3+2\big (2l+19\big )a^2+16(l+2)a+8 \Big ) < 0,\\ F_3 :=&\left( 1+\frac{1}{4}a+\frac{1}{2}l \right) E_5+D_3 = -\frac{1}{8} a\big (a+2\big ) \Big ( \big (l+3\big )a+6(l+1) \Big ) \le 0,\\ P_2 :=&\frac{1}{32}\Big ( 2\big (l+3\big )a^4 + \big (22l+37\big )a^3 + 4\big (l^2+17l+18\big )a^2 \\&+ 4\big (5l^2+14l+12\big )a + 32l^2 - 16 \Big ),\\ P_1 :=&- \frac{1}{64} a(2 + a) \Big ( 2(l+3)a^2 + (4l^2 + 32l + 37)a + 28l^2 + 72l + 48 \Big ),\\ Q_1 :=&-\frac{1}{32}(a + 2)\Big ( (l + 3)a^4 + 2(6l + 11)a^3 + (4l^2 + 52l + 54)a^2 \\&+ 8(3l^2 + 8l + 6)a + 16l^2 -8 \Big )\\ Q_0 :=&- \frac{1}{256}\Big (4(l + 3)a^5 + (8l^2 + 84l + 123)a^4 + 8(12l^2 + 58l + 55)a^3 \\&+ 32(2l^3 + 14l^2 + 20l + 11)a \\&+ 8(2l^3 + 43l^2 + 118l + 84)a^2 + 16(8l^3 + 14l^2 -4l -7)\Big ). \end{aligned} \end{aligned}$$

Since \( F_4<0 \), \( Q_1<0 \) and \( Q_0<0 \), we have

$$\begin{aligned} G(t,l,a) <0, \end{aligned}$$

Hence we have shown that for any \( l \ge 2 \), if

$$\begin{aligned} H(t,m,a)|_{m=l-1}<0, \end{aligned}$$

then there also holds

$$\begin{aligned} H(t,m,a)|_{m=l+1}<0. \end{aligned}$$

Combining (1)-(3), we have obtained that if \( \lambda _1 < -\left( 1+\frac{a}{2}\right) \), the inequality (A.15) holds for any integer \( m\ge 1 \). This complete the proof. \(\square \)

Remark A.1

For the case \( a=0 \), this estimate has been proved to be sharp. Furthermore,

$$\begin{aligned} \lim \limits _{n\rightarrow +\infty }\lambda _{n,m,0} = -1,\quad \quad \text { for any fixed } m>0. \end{aligned}$$

For more details about the location of \( \lambda _{n,m,0} \) and further discussion, see [18, 19].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ao, W., Lai, S. & Luo, S. Classification of finite Morse index solutions to the polyharmonic Hénon equation. Calc. Var. 62, 19 (2023). https://doi.org/10.1007/s00526-022-02361-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02361-x

Navigation