Skip to main content
Log in

Existence of minimisers of variational problems posed in spaces of mixed smoothness

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The present work constitutes a first step towards establishing a systematic framework for treating variational problems that depend on a given input function through a mixture of its derivatives of different orders in different directions. For a fixed vector \(\mathbf {a} := (a_1, \ldots , a_N) \in \mathbb {N}^N\) and \(u :\mathbb {R}^N \supset \varOmega \rightarrow \mathbb {R}^n\) we denote by \(\nabla _{\mathbf {a}} u := (\partial ^{\alpha } u)_{\langle \alpha , \mathbf {a}^{-1} \rangle = 1}\) the matrix whose i-th row is composed of derivatives \(\partial ^\alpha u^i\) of the i-th component of the map u, and where the multi-indices \(\alpha \) satisfy \(\langle \alpha , \mathbf {a}^{-1} \rangle = \sum _{j=1}^N \frac{\alpha _j}{a_j} = 1\). We study functionals of the form

$$\begin{aligned} \mathrm {W}^{\mathbf {a},p}(\varOmega ;\mathbb {R}^n) \ni u \mapsto \int _\varOmega F(\nabla _{\mathbf {a}} u(x)) \, \mathrm {d} x,\end{aligned}$$

where \(\mathrm {W}^{\mathbf {a},p}(\varOmega ; \mathbb {R}^n)\) is an appropriate Sobolev space of mixed smoothness and F is the integrand. We study existence of minimisers of such functionals under prescribed Dirichlet boundary conditions. We characterise coercivity, lower semicontinuity, and envelopes of relaxation of such functionals, in terms of an appropriate generalisation of Morrey’s quasiconvexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86(2), 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alibert, J.-J., Dacorogna, B.: An example of a quasiconvex function that is not polyconvex in two dimensions. Arch. Ration. Mech. Anal. 117(2), 155–166 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arroyo-Rabasa, A., De Philippis, G., Rindler, F.: Lower semicontinuity and relaxation of linear-growth integral functionals under PDE constraints. Adv. Calc. Var. 13(3), 219–255 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balder, E.J.: A general approach to lower semicontinuity and lower closure in optimal control theory. SIAM J. Control. Optim. 22(4), 570–598 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.M.: A Version of the Fundamental Theorem for Young Measures in PDEs and Continuum Models of Phase Transitions, pp. 207–215. Springer, Berlin (1989)

    Book  Google Scholar 

  7. Ball, J.M., Currie, J.C., Olver, P.J.: Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41(2), 135–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ball, J.M., Kirchheim, B., Kristensen, J.: Regularity of quasiconvex envelopes. Calc. Var. Partial. Differ. Equ. 11(4), 333–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ball, J.M., Murat, F.: \(\rm W ^{1, p}\)-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58(3), 225–253 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ball, J.M., Zhang, K.: Lower semicontinuity of multiple integrals and the biting lemma. Proc. R. Soc. Edinb. Sect. A Math. 114(3–4), 367–379 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benedetto, J.J., Czaja, W.: Integration and Modern Analysis. Springer, Berlin (2010)

    MATH  Google Scholar 

  12. Berliocchi, H., Lasry, J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations. Bull. Soc. Math. France 101, 129–184 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  13. Besov, O.V.: Concerning the theory of embedding and continuing classes of differentiable functions. Math. Notes 1(2), 156–161 (1967)

    Article  MATH  Google Scholar 

  14. Besov, O.V.: Growth of a mixed derivative of a function of \( C^{(l_1, l_2)}\). Math. Notes Acad. Sci. USSR 15(3), 201–206 (1974)

    MATH  Google Scholar 

  15. Besov, O.V., Il’in, V.P.: Natural extension of the class of regions in embedding theorems. Sbornik: Mathematics 4(4), 445–456 (1968)

    Article  MATH  Google Scholar 

  16. Besov, O.V., Il’in, V.P., Nikolskii, S.M.: Integral Representations of Functions and Imbedding Theorems, vol. 1. Winston & Sons, Washington (1978)

    Google Scholar 

  17. Besov, O.V., Il’in, V.P., Nikolskii, S.M.: Integral Representations of Functions and Imbedding Theorems, vol. 2. Winston & Sons, Washington (1978)

    Google Scholar 

  18. Boman, J.: Supremum norm estimates for partial derivatives of functions of several real variables. Ill. J. Math. 16(2), 203–216 (1972)

    MathSciNet  MATH  Google Scholar 

  19. Braides, A., Fonseca, I., Leoni, G.: A-quasiconvexity: relaxation and homogenization, ESAIM: Control. Optim. Calc. Var. 5, 539–577 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Google Scholar 

  21. Burenkov, V.I.: Imbedding and extension theorems for classes of differentiable functions of several variables defined on the entire spaces, Itogi Nauki i Tekhniki. Seriya Matematicheskii Analiz 3, 71–155 (1966)

    Google Scholar 

  22. Burenkov, V.I., Fain, B.L.: On the extension of functions from anisotropic spaces with preservation of class in Doklady Akademii Nauk 228.3. Russian Academy of Sciences (1976)

  23. Buttazzo, G.: Semicontinuity, relaxation and integral representation in the calculus of variations. Longman (1989)

  24. Cagnetti, F.: k-quasi-convexity reduces to quasi-convexity. Proc. R. Soc. Edinb. Sect. A Math. 141(4), 673–708 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Calderón, A.P., Torchinsky, A.: Parabolic maximal functions associated with a distribution. Adv. Math. 16(1), 1–64 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, C.Y., Kristensen, J.: On coercive variational integrals nonlinear analysis: theory. Methods Appl. 153, 213–229 (2017)

    MATH  Google Scholar 

  27. Dacorogna, B.: Quasiconvexity and relaxation of nonconvex problems in the calculus of variations. J. Funct. Anal. 46(1), 102–118 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin (2007)

    MATH  Google Scholar 

  29. Dacorogna, B., Marcellini, P.: A counterexample in the vectorial calculus of variations. Material instabilities in continuum mechanics, 77–83 (1988)

  30. Dacorogna, B., Marcellini, P.: Implicit Partial Differential Equations. Birkhäuser, Basel (1999)

    Book  MATH  Google Scholar 

  31. Dal Maso, G., Fonseca, I., Leoni, G., Morini, M.: Higher-order quasiconvexity reduces to quasiconvexity. Arch. Ration. Mech. Anal. 171(1), 55–81 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Demidenko, G.V., Upsenskii, S.V.: Partial Differential Equations and Systems Not Solvable with Respect to the Highest-Order Derivative. CRC Press, Cambridge (2003)

    Book  Google Scholar 

  34. DiPerna, R.J., Majda, A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations. Commun. Math. Phys. 108(4), 667–689 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34(150), 441–463 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  36. Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Evans, L.C.: Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95(3), 227–252 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \({\rm L}^{p}\) Spaces. Springer, Berlin (2007)

    MATH  Google Scholar 

  39. Fonseca, I., Leoni, G., Müller, S.: A-quasiconvexity: weak-star convergence and the gap. Annales de l’IHP, Analyse non linéaire 21(2), 209–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Fonseca, I., Müller, S.: A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  42. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  43. Gmeineder, F., Kristensen, J.: Partial Regularity for BV Minimizers. Arch. Ration. Mech. Anal. 232(3), 1429–1473 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Il’in, V.P.: Conditions of validity of inequalities between \(\rm L ^{p}\)-norms of partial derivatives of functions of several variables. Trudy Matematicheskogo Instituta imeni VA Steklova 96, 205–242 (1968)

    Google Scholar 

  45. Kazaniecki, K., Stolyarov, D.M., Wojciechowski, M.: Anisotropic Ornstein noninequalities. Anal. PDE 10(2), 351–366 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115(4), 329–365 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4(1), 59–90 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kirchheim, B., Kristensen, J.: On rank one convex functions that are homogeneous of degree one. Arch. Ration. Mech. Anal. 221(1), 527–558 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Kolyada, V.I.: On embedding theorems. In: Nonlinear Analysis, Function Spaces and Applications, pp. 35–94 (2007)

  50. Kolyada, V.I., Pérez, F.J.: Estimates of difference norms for functions in anisotropic Sobolev spaces. Math. Nachr. 267(1), 46–64 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kristensen, J.: Lower semicontinuity in spaces of weakly differentiable functions. Math. Ann. 313(4), 653–710 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kristensen, J.: On the non-locality of quasiconvexity, Annales de l’Institut Henri Poincare (C) Non Linear Analysis. Elsevier Masson 16(1), 1–13 (1999)

    Google Scholar 

  53. Kristensen, J.: A necessary and sufficient condition for lower semicontinuity. Nonlinear Anal. Theory Methods Appl. 120, 43–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kristensen, J.: Nonlinear analysis & applications. Lecture notes for a course given at the University of Oxford (2015)

  55. Kristensen, J., Prosinski, A.: Regularity of minimisers of variational problems in the mixed smoothness setting (in preparation)

  56. Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors. Bulletin de l’Académie polonaise des sciences. Série des sciences mathématiques, astronomiques, et physiques 13(1), 397–403 (1965)

    MathSciNet  MATH  Google Scholar 

  57. Marcellini, P.: Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscr. Math. 51(1), 1–28 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  58. McShane, E.J.: Generalized curves. Duke Math. J. 6(3), 513–536 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  59. Mejlbro, L., Topsøe, F.: A precise Vitali theorem for Lebesgue measure. Math. Ann. 230(2), 183–193 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  60. Meyers, N.G.: Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc. 119(1), 125–149 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  61. Morrey, C.B.: Quasiconvexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2(1), 25–53 (1952)

    Article  MATH  Google Scholar 

  62. Müller, S.: Rank-one convexity implies quasiconvexity on diagonal matrices. Int. Math. Res. Not. 20, 1087–1095 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Murat, F.: Compacité par compensation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 5(3), 489–507 (1978)

    MathSciNet  MATH  Google Scholar 

  64. Murat, F.: Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothese de rang constant. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 8(1), 69–102 (1981)

    MathSciNet  MATH  Google Scholar 

  65. Nikol’skii, S.M.: Inequalities for entire functions of finite degree and their application in the theory of differentiable functions of several variables. Trudy Matematicheskogo Instituta imeni VA Steklova 38, 244–278 (1951)

    MathSciNet  Google Scholar 

  66. Pedregal, P.: Jensen’s inequality in the calculus of variations. Differ. Integral Equ. 7(1), 57–72 (1994)

    MathSciNet  MATH  Google Scholar 

  67. Pedregal, P.: Parametrized Measures and Variational Principles. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  68. Pełczyński, A.: Boundedness of the canonical projection for Sobolev spaces generated by finite families of linear differential operators, Analysis at Urbana, vol. I, London Mathematical Society Lecture Note Series 137, pp. 395–415. Cambridge University Press, Cambridge (1989)

  69. Pełczyński, A., Senator, K.: On isomorphisms of anisotropic Sobolev spaces with classical Banach spaces and a Sobolev type embedding theorem. Stud. Math. 84(2), 169–215 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  70. Pełczyński, A., Senator, K.: Addendum to the paper ‘On isomorphisms of anisotropic Sobolev spaces with classical Banach spaces and a Sobolev type embedding theorem’. Stud. Math. 84(2), 217–218 (1986)

    Article  MATH  Google Scholar 

  71. Prosinski, A.: Closed \(\cal{A} \)-\(p\) quasiconvexity and variational problems with extended real-valued integrands, ESAIM: control. Optim. Calc. Var. 24(4), 1605–1624 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  72. Prosinski, A.: Calculus of variations in the mixed smoothness setting. Doctoral dissertation, University of Oxford (2019)

  73. Prosinski, A., Raiţă, B.: On the well-posedness of some variational problems (in preparation)

  74. Raiţă, B.: Potentials for A-quasiconvexity. Calc. Var. Partial Differ. Equ. 58(3), 105 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  75. Rindler, F.: Calculus of Variations. Springer International Publishing, Berlin (2018)

    Book  MATH  Google Scholar 

  76. Saks, S.: Theory of the Integral. Hafner Publishing Company, New York (1937)

    MATH  Google Scholar 

  77. Slobodeckii, L.N.: Generalized Sobolev spaces and their application to boundary problems for partial differential equations. Leningradskii Gosudarstvennyi Pedagogiceskii Institut imeni A. I. Gercena. Ucenye Zapiski 197, 54–112 (1958)

    MathSciNet  Google Scholar 

  78. Slobodeckii, L.N.: S. L. Sobolev’s spaces of fractional order and their application to boundary problems for partial differential equations. Dokl. Akad. Nauk SSSR 118, 243–246 (1958)

    MathSciNet  Google Scholar 

  79. Solonnikov, V.A.: Inequalities for functions of the classes \(\overrightarrow{\rm W }_p(\mathbb{R} ^n)\). J. Math. Sci. 3(4), 549–564 (1975)

    Article  Google Scholar 

  80. Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. Sect. A Math. 120(1), 185–189 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  81. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear analysis and mechanics, Heriot-Watt symposium, Pitman vol. 4, pp. 136–211 (1979)

  82. Tartar, L.: The Compensated Compactness Method Applied to Systems of Conservation Laws in Systems of Nonlinear Partial Differential Equations, pp. 263–285. Springer, Dordrecht (1983)

    MATH  Google Scholar 

  83. Tartar, L.: On mathematical tools for studying partial differential equations of continuum physics: H-measures and Young measures in Developments in partial differential equations and applications to mathematical physics, pp. 201–217. Springer, Boston (1992)

  84. Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 171153 (2017)

    Article  Google Scholar 

  85. Young, L.C.: Generalized curves and the existence of an attained absolute minimum in the calculus of variations. Comptes Rendus de la Société des Sciences et des Lettres de Varsovie 30, 212–234 (1937)

    MATH  Google Scholar 

  86. Young, L.C.: Generalized surfaces in the calculus of variations. Ann. Math. 84–103 (1942)

  87. Young, L.C.: Generalized surfaces in the calculus of variations II. Ann. Math. 530–544 (1942)

  88. Young, L.C.: Lectures on the Calculus of Variations and Optimal Control Theory. American Mathematical Society, Providence (2000)

    Google Scholar 

Download references

Acknowledgements

This work is based on the author’s doctoral thesis [72] prepared under the supervision of Prof. Jan Kristensen, whose support and guidance have been of immense help. The author would also like to thank Prof. Sir John Ball FRS, Prof. Gregory Seregin, Prof. Luc Nguyen, Prof. Gui-Qiang Chen, and Prof. Kewei Zhang, who have all acted as referees for the thesis at various stages of its completion. The generous financial support of Oxford Engineering and Physical Sciences Research Council Centre for Doctoral Training in Partial Differential Equations, the Clarendon Fund, and St John’s College Oxford is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Prosinski.

Additional information

Communicated by A. Malchiodi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosinski, A. Existence of minimisers of variational problems posed in spaces of mixed smoothness. Calc. Var. 62, 6 (2023). https://doi.org/10.1007/s00526-022-02342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02342-0

Mathematics Subject Classification

Navigation