Skip to main content
Log in

Bounded solutions for quasilinear modified Schrödinger equations

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we establish a new existence result for the quasilinear elliptic problem

$$\begin{aligned} -\mathrm{div}(A(x,u)|\nabla u|^{p-2}\nabla u) +\frac{1}{p} A_t(x,u)|\nabla u|^p + V(x)|u|^{p-2} u = g(x,u)\quad \text{ in } {\mathbb {R}}^N, \end{aligned}$$

with \(N\ge 2\), \(p>1\) and \(V:{\mathbb {R}}^N\rightarrow {\mathbb {R}}\) suitable measurable positive function, which generalizes the modified Schrödinger equation. Here, we suppose that \(A:{\mathbb {R}}^N\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a \({\mathcal {C}}^{1}\)-Caratheodory function such that \(A_t(x,t) = \frac{\partial A}{\partial t} (x,t)\) and a given Carathéodory function \(g:{\mathbb {R}}^N\times {\mathbb {R}}\rightarrow {\mathbb {R}}\) has a subcritical growth and satisfies the Ambrosetti–Rabinowitz condition. Since the coefficient of the principal part depends also on the solution itself, we study the interaction of two different norms in a suitable Banach space so to obtain a “good” variational approach. Thus, by means of approximation arguments on bounded sets we can state the existence of a nontrivial weak bounded solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  3. Arcoya, D., Boccardo, L.: Critical points for multiple integrals of the calculus of variations. Arch. Ration. Mech. Anal. 134, 249–274 (1996)

    Article  MathSciNet  Google Scholar 

  4. Arioli, G., Gazzola, F.: On a quasilinear elliptic differential equation in unbounded domains. Rend. Istit. Mat. Univ. Trieste 30, 113–128 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Bartolo, R., Candela, A.M., Salvatore, A.: Infinitely many solutions for a perturbed Schrödinger equation. Discrete Contin. Dyn. Syst. Ser. S 94–102 (2015)

  6. Bartolo, R., Candela, A.M., Salvatore, A.: Multiplicity results for a class of asymptotically \(p\)-linear equation on \({\mathbb{R}}^N\). Commun. Contemp. Math. 18, Article 1550031, 24 pages (2016)

  7. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001)

    Article  MathSciNet  Google Scholar 

  8. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R} }^N\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995)

    Article  Google Scholar 

  9. Benci, V., Fortunato, D.: Discreteness conditions of the spectrum of Schrödinger operators. J. Math. Anal. Appl. 64, 695–700 (1978)

    Article  MathSciNet  Google Scholar 

  10. Boccardo, L., Murat, F., Puel, J.P.: Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. IV Ser. 152, 183–196 (1988)

    Article  MathSciNet  Google Scholar 

  11. Candela, A.M., Palmieri, G.: Multiple solutions of some nonlinear variational problems. Adv. Nonlinear Stud. 6, 269–286 (2006)

    Article  MathSciNet  Google Scholar 

  12. Candela, A.M., Palmieri, G.: Infinitely many solutions of some nonlinear variational equations. Calc. Var. Partial Differ. Equ. 34, 495–530 (2009)

    Article  MathSciNet  Google Scholar 

  13. Candela, A.M., Palmieri, G.: Some abstract critical point theorems and applications. In: Hou, X., Lu, X., Miranville, A., Su, J., Zhu, J. (eds.) Dynamical Systems, Differential Equations and Applications, Discrete Cont. Dyn. Syst. Suppl. 2009, 133–142 (2009)

  14. Candela, A.M., Palmieri, G., Salvatore, A.: Positive solutions of modified Schrödinger equations on unbounded domains. (Preprint)

  15. Candela, A.M., Salvatore, A.: Existence of radial bounded solutions for some quasilinear elliptic equations in \({\mathbb{R}}^N\). Nonlinear Anal. 191, Article 111625. 26 pages (2020)

  16. Candela, A.M., Sportelli, C.: Soliton solutions for quasilinear modified Schrödinger equations in applied sciences. Discrete Contin. Dyn. Syst. Ser. S (in press). https://doi.org/10.3934/dcdss.2022121

  17. Canino, A., Degiovanni, M.: Nonsmooth critical point theory and quasilinear elliptic equations. In: Granas, A., Frigon, M., Sabidussi, G. (eds.) Topological Methods in Differential Equations and Inclusions, NATO Advanced Science Institute Series C: Mathematical and Physical Sciences, vol. 472, pp. 1–50. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  18. Colin, M., Jeanjean, L.: Solutions for a quasilinear Schrödinger equations: a dual approach. Nonlinear Anal. TMA 56, 213–226 (2004)

    Article  Google Scholar 

  19. Corvellec, J.N., Degiovanni, M., Marzocchi, M.: Deformation properties for continuous functionals and critical point theory. Topol. Methods Nonlinear Anal. 1, 151–171 (1993)

    Article  MathSciNet  Google Scholar 

  20. Glowinski, R., Marrocco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9, 41–76 (1975)

  21. Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    MATH  Google Scholar 

  22. Liu, X., Liu, J., Wang, Z.Q.: Quasilinear elliptic equations via perturbation method. Proc. Am. Math. Soc. 141, 253–263 (2013)

    Article  MathSciNet  Google Scholar 

  23. Liu, J.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations I. Proc. Am. Math. Soc. 131, 441–448 (2002)

    Article  Google Scholar 

  24. Liu, J.Q., Wang, Z.Q.: Multiple solutions for quasilinear elliptic equations with a finite potential well. J. Differ. Equ. 257, 2874–2899 (2014)

    Article  MathSciNet  Google Scholar 

  25. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Soliton solutions for quasilinear Schrödinger equations, II. J. Differ. Equ. 187, 473–493 (2003)

    Article  Google Scholar 

  26. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  Google Scholar 

  27. Liu, C., Zheng, Y.: Existence of nontrivial solutions for \(p\)-Laplacian equations in \({\mathbb{R} }^N\). J. Math. Anal. Appl. 380, 669–679 (2011)

    Article  MathSciNet  Google Scholar 

  28. Poppenberg, M., Schmitt, K., Wang, Z.Q.: On the existence of soliton solutions to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  Google Scholar 

  29. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  30. Salvatore, A.: Multiple solutions for perturbed elliptic equations in unbounded domains. Adv. Nonlinear Stud. 3, 1–23 (2003)

    Article  MathSciNet  Google Scholar 

  31. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)

    Article  MathSciNet  Google Scholar 

  32. Shi, H., Chen, H.: Existence and multiplicity of solutions for a class of generalized quasilinear Schrödinger equations. J. Math. Anal. Appl. 452, 578–594 (2017)

    Article  MathSciNet  Google Scholar 

  33. Zhang, J., Tang, X., Zhang, W.: Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential. J. Math. Anal. Appl. 420, 1762–1775 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Sportelli.

Additional information

Communicated by A. Neves.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research that led to the present paper was partially supported by MIUR–PRIN Project “Qualitative and quantitative aspects of nonlinear PDEs” (2017JPCAPN 005) and by Fondi di Ricerca di Ateneo 2017/18 “Problemi differenziali non lineari”. All the authors are members of the Research Group INdAM–GNAMPA.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Candela, A.M., Salvatore, A. & Sportelli, C. Bounded solutions for quasilinear modified Schrödinger equations. Calc. Var. 61, 220 (2022). https://doi.org/10.1007/s00526-022-02328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02328-y

Mathematics Subject Classification

Navigation