Skip to main content
Log in

Stability of spectral partitions and the Dirichlet-to-Neumann map

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The oscillation of a Laplacian eigenfunction gives a great deal of information about the manifold on which it is defined. This oscillation can be encoded in the nodal deficiency, an important geometric quantity that is notoriously hard to compute, or even estimate. Here we compare two recently obtained formulas for the nodal deficiency, one in terms of an energy functional on the space of equipartitions of the manifold, and the other in terms of a two-sided Dirichlet-to-Neumann map defined on the nodal set. We relate these two approaches by giving an explicit formula for the Hessian of the equipartition energy in terms of the Dirichlet-to-Neumann map. This allows us to compute Hessian eigenfunctions, and hence directions of steepest descent, for the equipartition energy in terms of the corresponding Dirichlet-to-Neumann eigenfunctions. Our results do not assume bipartiteness, and hence are relevant to the study of spectral minimal partitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. It is an immediate consequence of our main result that (3) also holds for non-simple eigenvalues. In this case the Hessian is degenerate, with nullity determined by the multiplicity of the eigenvalue, as in (8).

  2. The non-smooth case is more involved and will be treated elsewhere; see the discussion at the end of Sect. 2.

  3. Throughout the paper, all integrals are with respect to the Riemannian volume measure on M, or the induced surface measure on \(\Sigma \); we do not indicate the measure explicitly since it will always be clear from the context.

  4. The smooth structure does not depend on the choice of unit normal, so we may assume that this is the same \(\nu \) that appears in the statement of Theorem 3.

References

  1. Arendt, W., Mazzeo, R.: Friedlander’s eigenvalue inequalities and the Dirichlet-to-Neumann semigroup. Commun. Pure Appl. Anal. 11(6), 2201–2212 (2012)

    Article  MathSciNet  Google Scholar 

  2. Band, R., Berkolaiko, G., Raz, H., Smilansky, U.: The number of nodal domains on quantum graphs as a stability index of graph partitions. Comm. Math. Phys. 311(3), 815–838 (2012)

    Article  MathSciNet  Google Scholar 

  3. Beck, T., Bors, I., Conte, G., Cox, G., Marzuola, J.L.: Limiting eigenfunctions of Sturm-Liouville operators subject to a spectral flow. Ann. Math. Qué. 45(2), 249–269 (2021)

    Article  MathSciNet  Google Scholar 

  4. Bérard, P., Helffer, B.: Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle. Lett. Math. Phys. 106(12), 1729–1789 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bérard, P., Helffer, B., Kiwan, R.: Courant-sharp property for Dirichlet eigenfunctions on the Möbius strip. Port. Math. 78(1), 1–41 (2021)

    Article  MathSciNet  Google Scholar 

  6. Berkolaiko, G., Canzani, Y., Cox, G., Kuchment, P., Marzuola J.L. Stability of spectral partitions with corners (working title). in preparation

  7. Berkolaiko, G., Canzani, Y., Cox, G., Marzuola, J.L.: A local test for global extrema in the dispersion relation of a periodic graph. Pure Appl. Anal. (2021). https://msp.org/soon/coming.php?jpath=paa. arXiv:2004.12931

  8. Berkolaiko, G., Cox, G., Helffer, B., Sundqvist, M.P.: Computing nodal deficiency with a refined Dirichlet-to-Neumann map. J. Geom. Anal. (2022). https://doi.org/10.1007/s12220-022-00984-2. arXiv:2201.06667

  9. Berkolaiko, G., Cox, G., Marzuola, J.L.: Nodal deficiency, spectral flow, and the Dirichlet-to-Neumann map. Lett. Math. Phys. 109(7), 1611–1623 (2019)

    Article  MathSciNet  Google Scholar 

  10. Berkolaiko, G., Kuchment, P., Smilansky, U.: Critical partitions and nodal deficiency of billiard eigenfunctions. Geom. Funct. Anal. 22(6), 1517–1540 (2012)

    Article  MathSciNet  Google Scholar 

  11. Berkolaiko, G., Raz, H., Smilansky, U.: Stability of nodal structures in graph eigenfunctions and its relation to the nodal domain count. J. Phys. A 45(16), 165203, 16 (2012)

    Article  MathSciNet  Google Scholar 

  12. Bonnaillie-Noël, V., Helffer, B.: Nodal and spectral minimal partitions—the state of the art in 2016. In Shape optimization and spectral theory, pp. 353–397. De Gruyter Open, Warsaw (2017)

  13. Bonnaillie-Noël, V., Helffer, B., Vial, G.: Numerical simulations for nodal domains and spectral minimal partitions. ESAIM: Control, Optimisation and Calculus of Variations 16(1), 221–246 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Cox, G., Jones, C.K.R.T., Marzuola, J.L.: Manifold decompositions and indices of Schrödinger operators. Indiana Univ. Math. J. 66, 1573–1602 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. 2(92), 102–163 (1970)

    Article  MathSciNet  Google Scholar 

  16. Grinfeld, P.: Hadamard’s formula inside and out. J. Optim. Theory Appl. 146(3), 654–690 (2010)

    Article  MathSciNet  Google Scholar 

  17. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: Nodal domains and spectral minimal partitions. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(1), 101–138 (2009)

    Article  MathSciNet  Google Scholar 

  18. Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.: On spectral minimal partitions: the case of the sphere. In Around the Research of Vladimir Maz’ya III, pages 153–178. Springer (2010)

  19. Helffer, B., Sundqvist, M.: On nodal domains in Euclidean balls. Proceedings of the American Mathematical Society 144(11), 4777–4791 (2016)

    Article  MathSciNet  Google Scholar 

  20. Helffer, B., Sundqvist, M.P.: Spectral flow for pair compatible equipartitions. Communications in Partial Differential Equations, pp. 1–28 (2021)

  21. Hofmann, M., Kennedy, J.B.: Interlacing and Friedlander-type inequalities for spectral minimal partitions of metric graphs. Lett. Math. Phys. 111(4), 96, 30 (2021)

    Article  MathSciNet  Google Scholar 

  22. Hofmann, M., Kennedy, J.B., Mugnolo, D., Plümer, M.: Asymptotics and estimates for spectral minimal partitions of metric graphs. Integral Equations Operator Theory 93(3), 26, 36 (2021)

    Article  MathSciNet  Google Scholar 

  23. Kennedy, J.B., Kurasov, P., Léna, C., Mugnolo, D.: A theory of spectral partitions of metric graphs. Calc. Var. Partial Differential Equations 60(2), 61, 63 (2021)

    Article  MathSciNet  Google Scholar 

  24. Léna, C.: Courant-sharp eigenvalues of a two-dimensional torus. C.R. Math. 353(6), 535–539 (2015)

    Article  MathSciNet  Google Scholar 

  25. McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  26. Pleijel, Å.: Remarks on Courant’s nodal line theorem. Comm. Pure Appl. Math. 9, 543–550 (1956)

    Article  MathSciNet  Google Scholar 

  27. Uhlenbeck, K.: Generic properties of eigenfunctions. Amer. J. Math. 98(4), 1059–1078 (1976)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Ram Band, Sebastian Egger, Bernard Helffer, Peter Kuchment, and Mikael Persson Sundqvist for helpful comments and discussions. G.B. acknowledges the support of NSF Grant DMS-1815075. Y.C. was supported by the Alfred P. Sloan Foundation and NSF CAREER Grant DMS-2045494 and DMS-1900519. G.C. acknowledges the support of NSERC grant RGPIN-2017-04259. J.L.M. acknowledges support from the NSF through NSF CAREER Grant DMS-1352353 and NSF grant DMS-1909035. The authors are grateful to the AIM SQuaRE program for hosting them and supporting the initiation of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Cox.

Ethics declarations

Statements and declarations

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Communicated by S. Terracini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkolaiko, G., Canzani, Y., Cox, G. et al. Stability of spectral partitions and the Dirichlet-to-Neumann map. Calc. Var. 61, 203 (2022). https://doi.org/10.1007/s00526-022-02311-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02311-7

Mathematics Subject Classification

Navigation