Skip to main content
Log in

An optimal pinching theorem of minimal Legendrian submanifolds in the unit sphere

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the rigidity theorem of closed minimally immersed Legendrian submanifolds in the unit sphere. Utilizing the maximum principle, we obtain a new characterization of the Calabi torus in the unit sphere which is the minimal Calabi product Legendrian immersion of a point and the totally geodesic Legendrian sphere. We also establish an optimal Simons’ type integral inequality in terms of the second fundamental form of three-dimensional closed minimal Legendrian submanifolds in the unit sphere. Our optimal rigidity results for minimal Legendrian submanifolds in the unit sphere are new and also can be applied to minimal Lagrangian submanifolds in the complex projective space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blair, D.E.: Riemannian geometry of contact and symplectic manifolds. 2nd Edition, Vol. 203 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA (2010). https://doi.org/10.1007/978-0-8176-4959-3

    Book  Google Scholar 

  2. Blair, D.E., Ogiue, K.: Geometry of integral submanifolds of a contact distribution. Illinois J. Math. 19, 269–276 (1975). http://projecteuclid.org/euclid.ijm/1256050814

  3. Blair, D.E., Ogiue, K.: Positively curved integral submanifolds of a contact distribution. Illinois J. Math. 19(4), 628–631 (1975). http://projecteuclid.org/euclid.ijm/1256050671

  4. Castro, I., Li, H., Urbano, F.: Hamiltonian-minimal Lagrangian submanifolds in complex space forms. Pacific J. Math. 227(1), 43–63 (2006). https://doi.org/10.2140/pjm.2006.227.43

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, B.-Y., Ogiue, K.: On totally real submanifolds. Trans. Amer. Math. Soc. 193, 257–266 (1974). https://doi.org/10.2307/1996914

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, Q., Xu, S.L.: Rigidity of compact minimal submanifolds in a unit sphere. Geom. Dedicata 45(1), 83–88 (1993). https://doi.org/10.1007/BF01667404

    Article  MathSciNet  MATH  Google Scholar 

  7. Chern, S.S., do Carmo, M., Kobayashi, S.: Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968). Springer, New York pp. 59–75 (1970)

  8. Dillen, F., Li, H., Vrancken, L., Wang, X.: Lagrangian submanifolds in complex projective space with parallel second fundamental form. Pacific J. Math. 255(1), 79–115 (2012). https://doi.org/10.2140/pjm.2012.255.79

    Article  MathSciNet  MATH  Google Scholar 

  9. Dillen, F., Verstraelen, L., Vrancken, L.: Classification of totally real \(3\)-dimensional submanifolds of \(S^6(1)\) with \(K\ge 1/16\). J. Math. Soc. Japan 42(4), 565–584 (1990). https://doi.org/10.2969/jmsj/04240565

    Article  MathSciNet  MATH  Google Scholar 

  10. Dillen, F., Vrancken, L.: \({\bf C}\)-totally real submanifolds of Sasakian space forms. J. Math. Pures Appl. (9) 69(1), 85–93 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Ejiri, N.: Compact minimal submanifolds of a sphere with positive Ricci curvature. J. Math. Soc. Japan 31(2), 251–256 (1979). https://doi.org/10.2969/jmsj/03120251

    Article  MathSciNet  MATH  Google Scholar 

  12. Ejiri, N.: Totally real submanifolds in a \(6\)-sphere. Proc. Amer. Math. Soc. 83(4), 759–763 (1981). https://doi.org/10.2307/2044249

    Article  MathSciNet  MATH  Google Scholar 

  13. Gauchman, H.: Minimal submanifolds of a sphere with bounded second fundamental form. Trans. Amer. Math. Soc. 298(2), 779–791 (1986). https://doi.org/10.2307/2000649

    Article  MathSciNet  MATH  Google Scholar 

  14. Gauchman, H.: Pinching theorems for totally real minimal submanifolds of \({\bf C}{\rm P}^n(c)\). Tohoku Math. J. (2) 41(2), 249–257 (1989). https://doi.org/10.2748/tmj/1178227823

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, Z., Yin, J., Yin, B.: Rigidity theorems of Lagrangian submanifolds in the homogeneous nearly Kähler \(\mathbb{S} ^6(1)\). J. Geom. Phys. 144, 199–208 (2019). https://doi.org/10.1016/j.geomphys.2019.06.003

    Article  MathSciNet  MATH  Google Scholar 

  16. Lawson, H.B., Jr.: Local rigidity theorems for minimal hypersurfaces. Ann. of Math. 2(89), 187–197 (1969). https://doi.org/10.2307/1970816

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, A.-M., Li, J.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. (Basel) 58(6), 582–594 (1992). https://doi.org/10.1007/BF01193528

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, Y., Sun, L.: Rigidity of closed CSL submanifolds in the unit sphere. to appear in Ann. Inst. H. Poincaré C Anal. Non Linéaire (2022)

  19. Montiel, S., Ros, A., Urbano, F.: Curvature pinching and eigenvalue rigidity for minimal submanifolds. Math. Z. 191(4), 537–548 (1986). https://doi.org/10.1007/BF01162343

    Article  MathSciNet  MATH  Google Scholar 

  20. Naitoh, H.: Isotropic submanifolds with parallel second fundamental form in \(P^{m}(c)\). Osaka Math. J. 18(2), 427–464 (1981). http://projecteuclid.org/euclid.ojm/1200774202

  21. Naitoh, H.: Parallel submanifolds of complex space forms. I. Nagoya Math. J. 90, 85–117 (1983). https://doi.org/10.1017/S0027763000020365

    Article  MathSciNet  MATH  Google Scholar 

  22. Naitoh, H., Takeuchi, M.: Totally real submanifolds and symmetric bounded domains. Osaka Math. J. 19(4), 717–731 (1982). http://projecteuclid.org/euclid.ojm/1200775535

  23. Ogiue, K.: Positively curved totally real minimal submanifolds immersed in a complex projective space. Proc. Am. Math. Soc. 56, 264–266 (1976). https://doi.org/10.2307/2041616

    Article  MathSciNet  MATH  Google Scholar 

  24. Ros, A.: A characterization of seven compact Kaehler submanifolds by holomorphic pinching. Ann. of Math. (2) 121(2), 377–382 (1985). https://doi.org/10.2307/1971178

    Article  MathSciNet  MATH  Google Scholar 

  25. Ros, A.: Positively curved Kaehler submanifolds. Proc. Am. Math. Soc. 93(2), 329–331 (1985). https://doi.org/10.2307/2044772

    Article  MathSciNet  MATH  Google Scholar 

  26. Schäfer, L., Smoczyk, K.: Decomposition and minimality of Lagrangian submanifolds in nearly Kähler manifolds. Ann. Global Anal. Geom. 37(3), 221–240 (2010). https://doi.org/10.1007/s10455-009-9181-9

    Article  MathSciNet  MATH  Google Scholar 

  27. Simons, J.: Minimal varieties in riemannian manifolds. Ann. of Math. 2(88), 62–105 (1968). https://doi.org/10.2307/1970556

    Article  MathSciNet  MATH  Google Scholar 

  28. Urbano, F.: Totally real minimal submanifolds of a complex projective space. Proc. Am. Math. Soc. 93(2), 332–334 (1985). https://doi.org/10.2307/2044773

    Article  MathSciNet  MATH  Google Scholar 

  29. Xia, C.: Minimal submanifolds with bounded second fundamental form. Math. Z. 208(4), 537–543 (1991). https://doi.org/10.1007/BF02571543

    Article  MathSciNet  MATH  Google Scholar 

  30. Yamaguchi, S., Kon, M., Ikawa, T.: \(C\)-totally real submanifolds. J. Differential Geometry 11(1), 59–64 (1976). http://projecteuclid.org/euclid.jdg/1214433297

  31. Yamaguchi, S., Kon, M., Miyahara, Y.: A theorem on \(C\)-totally real minimal surface. Proc. Am. Math. Soc. 54, 276–280 (1976). https://doi.org/10.2307/2040800

    Article  MathSciNet  MATH  Google Scholar 

  32. Yau, S.T.: Submanifolds with constant mean curvature. I, II. Amer. J. Math. 96, 346–366 (1974); ibid. 97 (1975), 76–100. https://doi.org/10.2307/2373638

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Sun.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by Guangxi NSF (No. 2022GXNSFBA035465), Guangxi Science and Technology Project (No. GuikeAD22035942), Chongqing NSF (No. cstc2021jcjy-msxmX0443), the NSF of China (No. 11971358), the Hubei Provincial Natural Science Foundation of China (No. 2021CFB400) and the Youth Talent Training Program of Wuhan University. The second author thanks the Max Planck Institute for Mathematics in the Sciences for good working conditions when this work was carried out. The authors would like to thank the referees for their critical reading of this paper and useful suggestions which make this paper more readable.

Appendix A. An application to lagrangian submanifolds in the nearly Kähler \(\mathbb {S}^6\)

Appendix A. An application to lagrangian submanifolds in the nearly Kähler \(\mathbb {S}^6\)

Here we give a slight improvement of the main theorem in [15] as follows, by similar arguments used in the proof of Theorem 3.1.

Theorem Appendix A.1

Let M be a closed Lagrangian submanifold in the homogeneous nearly Kähler \(\mathbb {S}^6\). Then we have

$$\begin{aligned} \int _{M}\left|\mathbf {B}\right|^2\left( \left|\mathbf {B}\right|^2-\frac{75}{56}-\frac{10}{7}\Theta ^2\right) \ge 0. \end{aligned}$$
(4.5)

Moreover, the equality in (4.5) holds if and only if M is either the totally geodesic sphere, or the Dillen-Verstraelen-Vrancken’s Berger sphere (see [9, Theorem 5.1]) which satisfies \(\left|\mathbf {B}\right|^2=\frac{75}{56}+\frac{10}{7}\Theta ^2\) with \(\left|\mathbf{B}\right|^2\equiv \frac{25}{8}\) and \(\Theta \equiv \frac{\sqrt{5}}{2}\).

Proof

Here we only give a brief sketch. For more details please see [15]. We identify \(\mathbb {R}^7\) as the imaginary Cayley numbers. The Cayley multiplication induces a cross product \(``\times "\) on \(\mathbb {R}^7\). The almost complex structure J on \(\mathbb {S}^6\subset \mathbb {R}^7\) is then given by

$$\begin{aligned} JX{:}{=}x\times X,\quad \forall X\in T_x\mathbb {S}^6. \end{aligned}$$

Let \(\bar{\nabla }\) be the Levi-Civita connection on \(\mathbb {S}^6\), then \(\left( \bar{\nabla }_XJ\right) X=0\) for all \(X\in T\mathbb {S}^6\). Then \(\omega _{ijk}=\left\langle \left( \bar{\nabla }_{e_i}J\right) e_j,Je_k\right\rangle \) is the volume form of M. Since M is Lagrangian, i.e., \(JTM\subset T^{\bot }M\), we have ([26, Lemma 3.2])

$$\begin{aligned} \mathbf {B}\left( e_i,\left( \bar{\nabla }_{e_j}J\right) e_k\right) =J\left( \bar{\nabla }_{\mathbf {B}\left( e_i,e_j\right) }J\right) e_k+J\left( \bar{\nabla }_{e_j}J\right) \mathbf {B}\left( e_i,e_k\right) , \end{aligned}$$

which implies that M is minimal (cf. [12, Theorem 1]). We have the following Simons’ identity (cf. [7])

$$\begin{aligned} \dfrac{1}{2}\Delta \left|\mathbf {B}\right|^2=\left|\nabla ^{\bot }\mathbf {B}\right|^2+3\left|\mathbf {B}\right|^2-\sum _{\alpha ,\beta =1}^3\left\langle \mathbf {A}^{\nu _{\alpha }},\mathbf {A}^{\nu _{\beta }}\right\rangle ^2-\sum _{\alpha ,\beta =1}^3\left|\left[ \mathbf {A}^{\nu _{\alpha }},\mathbf {A}^{\nu _{\beta }}\right] \right|^2. \end{aligned}$$

Here \(\left\{ \nu _{\alpha }\right\} \) is a local orthonormal frame of \(T^{\bot }M\). Set

$$\begin{aligned} \sigma _{ijk}=\left\langle \mathbf {B}\left( e_i,e_j\right) ,Je_k\right\rangle , \end{aligned}$$

then \(\sigma \) is a tri-linear symmetric tensor. One can check that

$$\begin{aligned} \sigma _{ijk,l}=\left\langle \left( \nabla _{e_i}^{\bot }\mathbf {B}\right) \left( e_j,e_k\right) ,Je_l\right\rangle . \end{aligned}$$

Introduce

$$\begin{aligned} u_{ijkl}{:}{=}&\dfrac{1}{4}\left( \sigma _{ijk,l}+\sigma _{jkl,i}+\sigma _{kli,j}+\sigma _{lij,k}\right) \\ =&\sigma _{ijk,l}-\dfrac{1}{4}\left( \sigma _{jkm}\omega _{lim}+\sigma _{ikm}\omega _{ljm}+\sigma _{ijm}\omega _{lkm}\right) . \end{aligned}$$

One can check that u is a four-linear symmetric tensor and \(\sum _{i}u_{iij,k}=0\). By using the fact \(\sigma _{ijk,l}=\sigma _{ijl,k}+\sigma _{ijm}\omega _{lkm}\), a direct calculation yields (cf. [15, emma 4.4])

$$\begin{aligned} \left|\nabla ^{\bot }\mathbf {B}\right|^2=\left|u\right|^2+\dfrac{3}{4}\left|\mathbf {B}\right|^2. \end{aligned}$$

We therefore obtain

$$\begin{aligned} \dfrac{1}{2}\Delta \left|\sigma \right|^2=&\left|u\right|^2+\dfrac{15}{4}\left|\sigma \right|^2-\sum _{i,j=1}^3\left\langle \sigma _i,\sigma _j\right\rangle ^2-\sum _{i,j=1}^3\left|[\sigma _i,\sigma _j]\right|^2, \end{aligned}$$

where \(\sigma _i=\left( \sigma _{ijk}\right) _{1\le j,k\le n}\). Then, similarly as in the proof of Theorem 3.1, we obtain

$$\begin{aligned} \frac{1}{2}\Delta \left|\mathbf {B}\right|^2\ge \frac{14}{5}\left( \frac{75}{56}+\dfrac{10}{7}\Theta ^2-\left|\mathbf {B}\right|^2\right) \left|\mathbf {B}\right|^2. \end{aligned}$$

The rest of the proof follows from that in [15]. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Sun, L. & Yin, J. An optimal pinching theorem of minimal Legendrian submanifolds in the unit sphere. Calc. Var. 61, 192 (2022). https://doi.org/10.1007/s00526-022-02304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02304-6

Mathematics Subject Classification

Navigation