Skip to main content

Advertisement

Log in

Bubble towers in the ancient solution of energy-critical heat equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We construct a radial smooth positive ancient solution for energy critical semi-linear heat equation in \(\mathbb {R}^n\), \(n\ge 7\). It blows up at the origin with the profile of multiple Talenti bubbles in the backward time infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Problemes isopérimétriques et espaces de sobolev. Journal of differential geometry 11(4), 573–598 (1976)

    Article  MathSciNet  Google Scholar 

  2. Brendle, S.: Ancient solutions to the Ricci flow in dimension \(3\). Acta Math. 225(1), 1–102 (2020)

    Article  MathSciNet  Google Scholar 

  3. Brendle, S., Choi, K.: Uniqueness of convex ancient solutions to mean curvature flow in \(\mathbb{R} ^3\). Invent. Math. 217(1), 35–76 (2019)

    Article  MathSciNet  Google Scholar 

  4. Collot, C., Merle, F., Raphaël, P.: Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. Commun. Math. Phys. 352(1), 215–285 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cortazar, C., del Pino, M., Musso, M.: Green’s function and infinite-time bubbling in the critical nonlinear heat equation. J. Eur. Math. Soc. 22(1), 283–344 (2019)

    Article  MathSciNet  Google Scholar 

  6. Daskalopoulos, P., Del Pino, M., Sesum, N.: Type II ancient compact solutions to the Yamabe flow. Journal für die reine und angewandte Mathematik 2018(738), 1–71 (2018)

    Article  MathSciNet  Google Scholar 

  7. Del Pino, M., Gkikas, K.T.: Ancient multiple-layer solutions to the Allen–Cahn equation. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 148(6), 1165–1199 (2018)

    Article  MathSciNet  Google Scholar 

  8. del Pino, M., Musso, M., Wei, J.C.: Type II blow-up in the 5-dimensional energy critical heat equation. Acta Mathematica Sinica, English Series 35(6), 1027–1042 (2019)

    Article  MathSciNet  Google Scholar 

  9. Del Pino, M., Musso, M., Wei, J.: Infinite time blow-up for the 3-dimensional energy critical heat equation. Analysis & PDE 13(1), 215–274 (2020)

    Article  MathSciNet  Google Scholar 

  10. del Pino, M., Musso, M., Wei, J., Zhou, Y.: Type II finite time blow-up for the energy critical heat equation in \(\mathbb{R} ^4\). Discrete & Continuous Dynamical Systems-A 40(6), 3327 (2020)

    Article  MathSciNet  Google Scholar 

  11. Del Pino, M., Musso, M., Wei, J.C.: Existence and stability of infinite time bubble towers in the energy critical heat equation. Analysis & PDE,to appear, (2021)

  12. Fila, M., Yanagida, E.: Homoclinic and heteroclinic orbits for a semilinear parabolic equation. Tohoku Mathematical Journal 63(4), 561–579 (2011)

    Article  MathSciNet  Google Scholar 

  13. Filippas, S., Kohn, R.V.: Refined asymptotics for the blowup of \(u_t-\Delta u=u^p\). Commun. Pure Appl. Math. 45(7), 821–869 (1992)

    Article  Google Scholar 

  14. Filippas, S., Herrero, M.A., Velázquez, J.J.L.: Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 456(2004), 2957–2982 (2000)

    Article  MathSciNet  Google Scholar 

  15. Gidas, B., Ni, W.-M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68(3), 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  16. Giga, Y., Kohn, R.V.: Asymptotically self-similar blow-up of semilinear heat equations. Commun. Pure Appl. Math. 38(3), 297–319 (1985)

    Article  MathSciNet  Google Scholar 

  17. Giga, Y., Kohn, R.V.: Characterizing blowup using similarity variables. Indiana Univ. Math. J. 36(1), 1–40 (1987)

    Article  MathSciNet  Google Scholar 

  18. Giga, Y., Matsui, S., Sasayama, S.: Blow up rate for semilinear heat equations with subcritical nonlinearity. Indiana University mathematics journal, pages 483–514, (2004)

  19. Harada, J.: A higher speed type II blowup for the five dimensional energy critical heat equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 37(2), 309–341 (2020)

    Article  MathSciNet  Google Scholar 

  20. Harada, J.: A type II blowup for the six dimensional energy critical heat equation. Annals of PDE 6(2), 1–63 (2020)

    Article  MathSciNet  Google Scholar 

  21. Herrero, M.A., Velázquez, J.J.L.: Blow-up behaviour of one-dimensional semilinear parabolic equations. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 10(2), 131–189 (1993)

    Article  MathSciNet  Google Scholar 

  22. Herrero, M.A., Velázquez, J.J.L.: Explosion de solutions d’équations paraboliques semilinéaires supercritiques. Comptes Rendus de l’Académie des Sciences . Série I. Mathématique, 319(2), 141–145 (1994)

    MATH  Google Scholar 

  23. Jendrej, J.: Construction of two-bubble solutions for the energy-critical NLS. Anal. PDE 10(8), 1923–1959 (2017). (ISSN 2157-5045)

    Article  MathSciNet  Google Scholar 

  24. Jendrej, J.: Construction of two-bubble solutions for energy-critical wave equations. Amer. J. Math. 141(1), 55–118 (2019). (ISSN 0002-9327)

    Article  MathSciNet  Google Scholar 

  25. Jendrej, J., Lawrie, A.: Two-bubble dynamics for threshold solutions to the wave maps equation. Invent. Math. 213(3), 1249–1325 (2018). (ISSN 0020-9910)

    Article  MathSciNet  Google Scholar 

  26. Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Commun. Pure Appl. Math. 51(2), 139–196 (1998)

    Article  MathSciNet  Google Scholar 

  27. Mizoguchi, N.: Type-II blowup for a semilinear heat equation. Adv. Differential Equations 9(11–12), 1279–1316 (2004)

    MathSciNet  MATH  Google Scholar 

  28. Poláčik, P., Yanagida, E.: A liouville property and quasiconvergence for a semilinear heat equation. J. Differential Equations 208(1), 194–214 (2005)

    Article  MathSciNet  Google Scholar 

  29. Poláčik, P., Quittner, P.: Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems 41(1), 413–438 (2021)

    Article  MathSciNet  Google Scholar 

  30. Quittner, P.: A priori bounds for global solutions of a semilinear parabolic problem. Acta Math. Univ. Comenianae 68(2), 195–203 (1999)

    MathSciNet  MATH  Google Scholar 

  31. Quittner, P.: Optimal liouville theorems for superlinear parabolic problems. Duke Math. J. 170(6), 1113–1136 (2021)

    Article  MathSciNet  Google Scholar 

  32. Quittner, P., Souplet, P.: Superlinear parabolic problems. Springer, Berlin (2019)

    Book  Google Scholar 

  33. Schweyer, R.: Type II blow-up for the four dimensional energy critical semi linear heat equation. J. Funct. Anal. 263(12), 3922–3983 (2012)

    Article  MathSciNet  Google Scholar 

  34. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187(4), 511–517 (1984)

    Article  MathSciNet  Google Scholar 

  35. Talenti, G.: Best constant in sobolev inequality. Annali di Matematica 110(1), 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  36. Velázquez, J.J.L.: Higher dimensional blow up for semilinear parabolic equations. Comm. Partial Differential Equations 17(9–10), 1567–1596 (1992)

    Article  MathSciNet  Google Scholar 

  37. Wang, K., Wei, J.C.: Refined blowup analysis and nonexistence of type ii blowups for an energy critical nonlinear heat equation. arXiv preprint arXiv:2101.07186 (2021)

  38. Wang, X.: On the cauchy problem for reaction-diffusion equations. Trans. Am. Math. Soc. 337(2), 549–590 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of L. Sun and J. Wei is partially supported by NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Sun.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Estimates for the data in the outer problem

We will prove Proposition 4.1 in this section. Throughout this section, we assume \(\Vert \Psi \Vert _{\alpha ,\sigma }^{out,*} + \Vert \vec {\phi }\Vert _{a,\sigma }^{in,*}< \infty \), \(\Vert \vec {\mu }_1\Vert _{\sigma }\le 1\).

The parameters are determined in the following order. First, we choose R as a large fixed positive constant. Second, we choose \(\sigma >0\) small. Third, we choose \(\delta >0\) small. Fourth, we choose \(\epsilon >0\) small. Finally, we take \(t_{0}\) very negative such that \(\mu _{j} \approx \mu _{0j} \), for \(j=1, \dots , k\), \(\dot{\mu }_{j} \approx \dot{\mu }_{0j} \) for \(j=2 , \dots , k\).

We introduce the notation \(y_j=x/\mu _j\), \(\bar{y}_{j}=x/\bar{\mu }_j\), \(y_{0j}=x/\mu _{0j}\), \(\bar{y}_{0j}=x/\bar{\mu }_{0j}\) for \(j=1 , \dots , k\). One readily sees that \(|y_j| \approx |y_{0j}|\), \(|\bar{y}_j| \approx |\bar{y}_{0j}|\) for \(j=1 , \dots , k\).

Lemma A.1

Consider the \(U_j\) defined in (1.22). For \(j=1,\cdots ,k-1\), one has

$$\begin{aligned} U_j< U_{j+1}\text { in }\{|x|<\bar{\mu }_{j+1}\} \text { and }U_j> U_{j+1}\text { in }\{|x|>\bar{\mu }_{j+1}\}. \end{aligned}$$
(A.1)

In \(\{|x| \le \bar{\mu }_{0k} \}\),

$$\begin{aligned} U_{k} > rsim U_{k-1}> U_{k-2}> \dots > U_{1} . \end{aligned}$$
(A.2)

In \(\{|x|\ge \bar{\mu }_{02} \}\),

$$\begin{aligned} U_{1} > rsim U_{2}> U_3>\dots > U_{k} . \end{aligned}$$
(A.3)

In \(\{\bar{\mu }_{0,j+1}\le |x| \le \bar{\mu }_{0j} \}\), \(j=2, \dots , k-1\),

$$\begin{aligned} U_{j} > rsim U_{j+1}> U_{j+2}> \dots> U_{k}, \quad U_{j} > rsim U_{j-1}> U_{j-2}> \dots > U_{1} . \end{aligned}$$
(A.4)

Moreover

$$\begin{aligned} \frac{U_{j+1}}{U_j}&\approx \lambda _{j+1}^{-\frac{n-2}{2}} \langle y_{j+1} \rangle ^{-(n-2)} \mathbf {1}_{\{ |x|\le \mu _{0j}\}} + \lambda _{j+1}^{\frac{n-2}{2}} \mathbf {1}_{\{ |x| > \mu _{0j}\}} \text{ for } j=1, \dots , k-1 , \end{aligned}$$
(A.5)
$$\begin{aligned} \frac{U_{j-1}}{U_j}&\approx \lambda _{j}^{\frac{n-2}{2}} \langle y_j \rangle ^{n-2} \mathbf {1}_{\{ |x|\le \mu _{0,j-1}\}} + \lambda _{j}^{-\frac{n-2}{2}} \mathbf {1}_{\{ |x| > \mu _{0,j-1}\}} \text{ for } j=2, \dots , k . \end{aligned}$$
(A.6)

Proof

(A.1)-(A.4) follow from that \(\frac{U_{j+1}}{U_j}\) is strictly decreasing about |x| and \(\frac{U_{j+1}}{U_j}(\bar{\mu }_{j+1})=1\), (see Fig. 1). Up to a multiplicity of the constant \(\alpha _n\), \(U_j=\mu _{j}^{\frac{2-n}{2}}(1+|y_j|^2)^{\frac{2-n}{2}}\) and

$$\begin{aligned} U_{j+1}=\frac{\mu _{j+1}^{\frac{n-2}{2}}}{(\mu _{j+1}^2+|x|^2)^{\frac{n-2}{2}}}=\frac{\mu _{j+1}^{\frac{n-2}{2}}\mu _j^{2-n}}{(\lambda _{j+1}^2+|y_j|^2)^{\frac{n-2}{2}}}, \end{aligned}$$
(A.7)

then

$$\begin{aligned} \frac{U_{j+1}}{U_j} =\lambda _{j+1}^{\frac{n-2}{2}}\frac{(1+|y_j|^2)^{\frac{n-2}{2}}}{(\lambda _{j+1}^2+|y_j|^2)^{\frac{n-2}{2}}} \approx \lambda _{j+1}^{-\frac{n-2}{2}} \langle y_{j+1} \rangle ^{-(n-2)} \mathbf {1}_{\{ |x|\le \mu _{0j}\}} + \lambda _{j+1}^{\frac{n-2}{2}} \mathbf {1}_{\{ |x| > \mu _{0j}\}} ,\qquad \end{aligned}$$
(A.8)

for \(j=1, \dots , k-1\). This finishes the proof of (A.5). Similarly,

$$\begin{aligned} \frac{U_{j-1}}{U_j} = \lambda _j^{-\frac{n-2}{2}} \frac{(\lambda _j^2 + |y_{j-1}|^2)^{\frac{n-2}{2}}}{(1+|y_{j-1}|^2)^{\frac{n-2}{2}}} \approx \lambda _{j}^{\frac{n-2}{2}} \langle y_j \rangle ^{n-2} \mathbf {1}_{\{ |x|\le \mu _{0,j-1}\}} + \lambda _{j}^{-\frac{n-2}{2}} \mathbf {1}_{\{ |x| > \mu _{0,j-1}\}} \end{aligned}$$
(A.9)

for \(j=2, \dots , k\). Then (A.6) holds. \(\square \)

Fig. 1
figure 1

Relation for three bubbles

Lemma A.2

Consider \(\varphi _0\) defined in (2.6). One has \(|\varphi _0|\lesssim \sum \limits _{i=2}^k\lambda _i U_i\chi _i\).

Proof

By (2.6) and (2.22), we have

$$\begin{aligned} |\varphi _0|\lesssim \sum _{i=2}^k\mu _{i-1}^{-\frac{n-2}{2}}\langle y_i\rangle ^{-2}\chi _i. \end{aligned}$$
(A.10)

It follows from (2.4) that the support of \(\chi _i\) are disjoint. More precisely, the support of \(\chi _i\) is contained in \( \{\lambda _{i+1}^{\frac{1}{2}}\le |y_i|\le \lambda _i^{-\frac{1}{2}}\}\). It is easy to verify that \(\mu _{i-1}^{-\frac{n-2}{2}}\langle y_i\rangle ^{-2}\lesssim \lambda _i U_i\) in this set. \(\square \)

Lemma A.3

For \(0<\alpha<a<1\), there exists R large enough and \(t_0\) negative enough such that \(B[\vec {\phi }]\) defined in (3.8) satisfies

$$\begin{aligned} \begin{aligned} \Vert B[\vec {\phi }\,]\Vert ^{out}_{\alpha ,\sigma }\lesssim R^{\alpha -a} \Vert \vec {\phi }\Vert ^{in,*}_{a,\sigma } \end{aligned} \end{aligned}$$
(A.11)

Proof

By the definition (6.1) and (4.4),

$$\begin{aligned} \langle y_j\rangle |\nabla _{y_j}\phi _j(y_j,t)|+|\phi _j(y_j,t)|\lesssim |t|^{\gamma _j}\mu _{0j}^{\frac{n-2}{2}}R^{n+1-a}\langle y_j\rangle ^{-n-1}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }. \end{aligned}$$
(A.12)

\(\bullet \) First, using (3.7)

$$\begin{aligned} \begin{aligned} |\dot{\mu }_j\frac{\partial \varphi _j}{\partial \mu _j}\eta _j|=&\,\left| \dot{\mu }_j\mu _j^{-\frac{n}{2}}\left( \frac{n-2}{2} \phi _j(y_j,t)+y_j\cdot \nabla _{y_j} \phi _j(y_j,t)\right) \eta _{j}\right| \\ \lesssim&\, | \dot{\mu }_j| \mu _j^{-1}(-t)^{\gamma _j}R^{n+1-a}\langle y_j\rangle ^{-n-1}\eta _j\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma } \\ \lesssim&\, |t_0|^{-\epsilon } R^{n+1-a} w_{1j}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }. \end{aligned} \end{aligned}$$
(A.13)

Here we choose \(\epsilon \) small such that \(|\dot{\mu }_j \mu _j| \lesssim |t|^{-\epsilon }\) for \(j=1, \dots , k\). We have used (4.20) in the last step.

\(\bullet \) Second, (A.12) implies that

$$\begin{aligned} |\varphi _j(x,t)|\lesssim |t|^{\gamma _j}R^{-a}\Vert \phi _j\Vert _{j,a,\sigma }^{in,*} \text{ for } 2R\le |y_j| \le 4R . \end{aligned}$$
(A.14)

Using (3.2), we obtain

$$\begin{aligned} |\Delta \eta _j \varphi _j|\lesssim (R\mu _j)^{-2}|t|^{\gamma _j}R^{-a}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }\mathbf {1}_{\{2R\le |y_j|\le 4R\}}\lesssim R^{\alpha -a}w_{1j}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }. \end{aligned}$$
(A.15)

Similarly, we have

$$\begin{aligned} \begin{aligned} |\nabla _x\eta _j\cdot \nabla _x\varphi _j|\lesssim&\ R^{-1}\mu _j^{-1}|t|^{\gamma _j}\mu _j^{-1}R^{-1-a}\Vert \phi _j\Vert _{j,a,\sigma }^{in,*}\mathbf {1}_{\{2R\mu _j\le |x|\le 4R\mu _j\}} \lesssim R^{\alpha -a} w_{1j}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma } \end{aligned} \end{aligned}$$
(A.16)

and

$$\begin{aligned} \begin{aligned} |\partial _t\eta _j\varphi _j|&\lesssim R^{-1}\mu _j^{-2} |\dot{\mu }_j | |t|^{\gamma _j}R^{-a}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }\mathbf {1}_{\{2R\le |y_j|\le 4R\}} \lesssim R^{1+\alpha -a} |\dot{\mu }_j | w_{1j}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma } \\&\lesssim R^{1+\alpha -a} |t_0|^{-\epsilon } w_{1j}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma } , \end{aligned} \end{aligned}$$
(A.17)

when \(|\dot{\mu }_j|\lesssim |t|^{-\epsilon }\) for \(j=1, \dots , k\).

\(\bullet \) Third, to estimate \(\left| p(u_*^{p-1}-U_j^{p-1})\varphi _j\eta _j\right| \). We only give calculation details for \(j=2, \dots , k-1\) since the case \(j=1\) and \(j=k\) can be dealt with similarly. Consider it in \(\{\bar{\mu }_{0,j+1}\le |x|\le 4R\mu _{0j}\}\). By Lemma A.1 and Lemma A.2,

$$\begin{aligned} U_{j}^{-1}\left( \sum \limits _{i\ne j} U_{i} + \varphi _{0} \right) \ge 2^{-1}U_{j}^{-1}\left( \sum \limits _{i\ne j} U_{i} \right) -\lambda _{j}^{\frac{1}{2}} > -\frac{1}{2}, \end{aligned}$$

when \(t_0\) is very negative. Consequently \(u_*>\frac{1}{2}U_j\). Thus by the mean value theorem and (A.5) and (A.6),

$$\begin{aligned} \begin{aligned}&|u_*^{p-1}-U_j^{p-1}| \lesssim U_j^{p-1}\left( \frac{U_{j+1}}{U_j}+\frac{U_{j-1}}{U_j} + \lambda _j \right) \\ \lesssim&\mu _j^{-2} \langle y_j\rangle ^{-4} \left( \lambda _{j+1}^{-\frac{n-2}{2}} \langle y_{j+1} \rangle ^{2-n} \mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le \mu _{0j}\}} + \lambda _{j+1}^{\frac{n-2}{2}} +\lambda _j^{\frac{n-2}{2}}\langle y_j\rangle ^{n-2}+\lambda _j\right) . \end{aligned}\nonumber \\ \end{aligned}$$
(A.18)

Therefore, using \(|\varphi _j|\lesssim |t|^{\gamma _j}R^{n+1-a} \Vert \phi _j\Vert _{j,a,\sigma }^{in,*}\),

$$\begin{aligned} \begin{aligned}&\left| p(u_*^{p-1}-U_j^{p-1})\varphi _j\eta _j\right| \mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le 4R\mu _j\}} \\ \lesssim&\ R^{n+1-a} \mu _j^{-2}|t|^{\gamma _j} \lambda _{j+1}^{-\frac{n-2}{2}} \langle y_{j+1}\rangle ^{2-n}\mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le \mu _{0j} \}} \Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }\\&\ +R^{n+1-a}(\lambda _{j+1}^{\frac{n-2}{2}}+\lambda _j^{\frac{n-2}{2}} R^{n-2}+\lambda _j)w_{1j}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }\\ \lesssim&\ R^{n+1-a}|t_0|^{-\epsilon }(w_{2j}+w_{1j})\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }. \end{aligned} \end{aligned}$$
(A.19)

Here we have used the following fact.

$$\begin{aligned} \begin{aligned}&R^{n+1-a} \mu _j^{-2}|t|^{\gamma _j} \lambda _{j+1}^{-\frac{n-2}{2}} \langle y_{j+1}\rangle ^{2-n} \mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le \mu _{0j} \}} \\ \approx&\, R^{n+1-a} \lambda _{j+1} \lambda _{j}^{\frac{n}{2} -1} |t|^{\sigma } |t|^{-2\sigma } \mu _{j+1}^{\frac{n}{2} -2} \mu _{j}^{-1} |x|^{2-n} \mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le \mu _{0j} \}} \\ \lesssim&\, R^{n+1-a} |t_0|^{-\epsilon } w_{2j} . \end{aligned} \end{aligned}$$

In \(\{\bar{\mu }_{0,m+1}\le |x|\le \bar{\mu }_{0m}\}\), \(m=j+1,\cdots ,k\), one has \(|u_*^{p-1}-U_j^{p-1}|\lesssim U_m^{p-1} \approx \mu _m^{-2} \langle y_m \rangle ^{-4} \) and \(|\varphi _j|\lesssim (-t)^{\gamma _j}R^{n+1-a}\Vert \phi _j\Vert _{j,a,\sigma }^{in,*}\).

Then it is easy to see

$$\begin{aligned} \left| p(u_*^{p-1}-U_j^{p-1})\varphi _j\eta _j\right| \lesssim R^{n+1-a} |t|^{\gamma _j-\gamma _m} w_{1m}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }\lesssim R^{n+1-a}|t_0|^{-\epsilon }w_{1m}\Vert \phi _j\Vert ^{in,*}_{j,a,\sigma }. \end{aligned}$$

Taking \(t_0\) very negative such that \(|t_0|^{-\epsilon }<R^{\alpha -n-1}\), we obtain (A.11). \(\square \)

Recall \(E^{out}\) defined in (3.10). We reorganize the terms as the following.

$$\begin{aligned} E^{out}=\bar{E}_{11}+\bar{E}_2+\bar{E}_3+\bar{E}_4+\bar{E}_5 \end{aligned}$$
(A.20)

where \(\bar{E}_{11}\) is defined in (2.13), and

$$\begin{aligned} \bar{E}_2=&\mu _1^{-\frac{n+2}{2}}D_1[\vec {\mu }_1](1-\eta _1)+\sum _{j=2}^k\mu _j^{-\frac{n+2}{2}}D_j[\vec {\mu }_1] (\chi _j-\eta _j )+ \sum _{j=2}^k \mu _j^{-\frac{n+2}{2}}\Theta _j[\vec {\mu }_1]\chi _j \end{aligned}$$
(A.21)
$$\begin{aligned} \bar{E}_3=&\sum _{j=2}^kp(\bar{U}^{p-1}-U_j^{p-1})\varphi _{0j}\chi _j \end{aligned}$$
(A.22)
$$\begin{aligned} \bar{E}_4=&\sum _{j=2}^{k}\left( 2 \nabla _{x} \varphi _{0 j} \cdot \nabla _{x}\chi _{j}+ \Delta _{x}\chi _{j} \varphi _{0 j}\right) -\sum _{j=2}^{k} \partial _{t}\left( \varphi _{0 j} \chi _{j} \right) \end{aligned}$$
(A.23)
$$\begin{aligned} \bar{E}_5=&N_{\bar{U}}[\varphi _0]. \end{aligned}$$
(A.24)

Lemma A.4

There exist \(\sigma ,\epsilon >0\) small and \(t_0\) negative enough, such that

$$\begin{aligned}E^{out}\lesssim R^{-1} \left( \sum _{j=1}^kw_{1j}+\sum _{j=1}^{k-1} w_{2j}+w_3\right) . \end{aligned}$$

Proof

\(\bullet \) Estimate of \(\bar{E}_2\). Consider the first term in \(\bar{E}_2\). The support of \(1-\eta _1\) is \(\{|y_{01}|\ge 2R\}\). Since we assume \(\Vert \vec {\mu }\Vert _\sigma <1\), one has \(|\dot{\mu }_{11}|\le \Vert \vec {\mu }_1\Vert _{\sigma } |t|^{-1-\sigma } \le |t|^{-1-\sigma }\). Then using (2.27)

$$\begin{aligned} |\mu _{1}^{-\frac{n-2}{2}} D_{1}[\vec {\mu }_1] (1-\eta _1)|\lesssim & {} |t|^{-1-\sigma } |x|^{2-n} \mathbf {1}_{\{ |x|\ge 2R \}}\\\lesssim & {} R^{4+\alpha -n}w_{11} + R^{-1} w_{3} \lesssim R^{-1} \left( w_{11} +w_{3} \right) . \end{aligned}$$

For \(j\ge 2\), the support of \(\chi _j-\eta _j\) is contained in \(\{ |x|\le \bar{\mu }_{0,j+1}\}\cup \{ 2R \mu _{0j} \le |x|\le \bar{\mu }_{0j} \}\). In the first set (it is vacuum if \(j=k\)), one has \(|\chi _j-\eta _j|\le \chi (2 \bar{y}_{0,j+1})\) and \(\langle y_{0j}\rangle \approx 1\). It follows from (6.4) that

$$\begin{aligned} \left| \mu _j^{-\frac{n+2}{2}}D_j[\vec {\mu }_1](\chi _j-\eta _j)\right| \lesssim \mu _j^{-2} |t|^{\gamma _{j}} \chi (2 \bar{y}_{0,j+1}) \lesssim |t|^{-\epsilon } w_{1,j+1}. \end{aligned}$$

In the second set, since \(|y_{0j}|\ge 2R\), then

$$\begin{aligned} \left| \mu _j^{-\frac{n+2}{2}}D_j[\vec {\mu }_1](\chi _j-\eta _j)\right| \lesssim \mu _{j}^{-2} |t|^{\gamma _{j}} |y_j|^{-4} \lesssim R^{-1 } w_{1j}. \end{aligned}$$

It is straightforward to have

$$\begin{aligned} |\mu _j^{-\frac{n+2}{2}}\Theta _j[\vec {\mu }_1]\chi _j| \lesssim |t|^{-\sigma } \mu _{j}^{-2} |t|^{\gamma _j} \langle y_j \rangle ^{-4} \chi _j \lesssim |t|^{-\sigma } w_{1j} . \end{aligned}$$

\(\bullet \) Estimate of \(\bar{E}_3\). In the support of \(\chi _j\), by Lemma (A.1), we have

$$\begin{aligned} |\bar{U}^{p-1}-U_j^{p-1}|\lesssim U_j^{p-1}(\frac{U_{j+1}}{U_j}+\frac{U_{j-1}}{U_j}). \end{aligned}$$

It follows from (2.7) and (2.22) that \(\varphi _{0j}\le |t|^{\gamma _j+\sigma }\langle y_i\rangle ^{-2}\). Using (A.18), similar to (A.19), we get

$$\begin{aligned}|\bar{E}_3|\lesssim \sum \limits _{j=2}^{k} \lambda _j^{\frac{n-2}{2}}|t|^{\sigma }w_{1j} + \sum \limits _{j=1}^{k-1} \lambda _{j+1} \lambda _j^{\frac{n-2}{2}}|t|^{2\sigma }w_{2j}\lesssim |t_0|^{-\epsilon }(\sum \limits _{j=2}^{k} w_{1j}+\sum \limits _{j=1}^{k-1}w_{2j}). \end{aligned}$$

\(\bullet \) Estimate of \(\bar{E}_4\). Notice

$$\begin{aligned} \left| \nabla _{x} \chi _{j}\right| \lesssim&\bar{\mu }_{0j}^{-1} \mathbf {1}_{\left\{ \frac{1}{2}\bar{\mu }_{0 j}<\left| x\right|< \bar{\mu }_{0 j}\right\} }+ \bar{\mu }_{0,j+1}^{-1} \mathbf {1}_{\left\{ \frac{1}{2} \bar{\mu }_{0,j+1}<\left| x\right|< \bar{\mu }_{0,j+1}\right\} }.\\ \left| \Delta _{x} \chi _{j}\right| \lesssim&\bar{\mu }_{0j}^{-2} \mathbf {1}_{\left\{ \frac{1}{2}\bar{\mu }_{0 j}<\left| x\right|< \bar{\mu }_{0 j}\right\} }+ \bar{\mu }_{0,j+1}^{-2} \mathbf {1}_{\left\{ \frac{1}{2} \bar{\mu }_{0,j+1}<\left| x\right| < \bar{\mu }_{0,j+1}\right\} }. \end{aligned}$$

By (2.22), one has \( |\varphi _{0j}|\lesssim |t|^{\gamma _j+\sigma }\langle y_j\rangle ^{-2}\), \( |\nabla _x\varphi _{0j}|\lesssim \lambda _{0j}^{\frac{n-2}{2}}\mu _j^{-\frac{n}{2}}\langle y_j\rangle ^{-3} \approx \mu _j^{-1}|t|^{\gamma _j+\sigma }\langle y_j\rangle ^{-3}\), then

$$\begin{aligned} |\nabla _x\varphi _{0j}\cdot \nabla _x \chi _j|\lesssim&|t|^\sigma \frac{\mu _j}{\bar{\mu }_j}w_{1j} +|t|^{\gamma _j-\gamma _{j+1}+\sigma } \left( \frac{\mu _{j+1}}{\mu _{j}} \right) ^{\frac{1-\alpha }{2}} w_{1,j+1}\lesssim |t_0|^{-\epsilon }(w_{1j}+w_{1,j+1}).\\ |\varphi _{0j} \Delta _x \chi _j|\lesssim&|t|^\sigma \frac{\mu _j}{\bar{\mu }_j}w_{1j} + |t|^{ \frac{n-2}{2}(\alpha _{j-1} -\alpha _{j}) + \frac{\alpha }{2}(\alpha _{j+1} - \alpha _{j}) + \sigma } w_{1,j+1}\lesssim |t_0|^{-\epsilon }(w_{1j}+w_{1,j+1}). \end{aligned}$$

where we have used that \( \frac{n-2}{2}(\alpha _{j-1} -\alpha _{j}) + \frac{\alpha }{2}(\alpha _{j+1} - \alpha _{j}) = (\frac{\alpha }{n-6}-1) \left( \frac{n-2}{n-6}\right) ^{j-1} \le \frac{\alpha }{n-6}-1\).

For \( \partial _t(\varphi _{0j}\chi _j)\), we have

$$\begin{aligned} \begin{aligned}&|\partial _t(\varphi _{0j})\chi _j|+|\varphi _{0j}\partial _t \chi _j | \lesssim |t|^{\gamma _j+\sigma -1}\langle y_j\rangle ^{-2}\left( \chi _j + | \nabla _{x} \chi _j | \right) \\&\quad \lesssim |t|^{\sigma -1} \mu _{j}^{2-\frac{\alpha }{2}} \mu _{j-1}^{\frac{\alpha }{2}} w_{1j} \lesssim |t_0|^{-\epsilon } w_{1j} . \end{aligned} \end{aligned}$$

\(\bullet \) Estimate of \(\bar{E}_5\). It follows from (2.10), (A.10) and \(p\in (1,2)\) that

$$\begin{aligned} \begin{aligned}&|N_{\bar{U}}[\varphi _0]| \lesssim |\varphi _0|^p \lesssim \sum _{j=2}^k |t|^{(\gamma _j+\sigma )p}\langle y_j\rangle ^{-2p} \chi _j^p \\&\quad \approx \sum _{j=2}^k |t|^{2(\alpha _{j-1} - \alpha _j ) +\sigma } \langle y_j \rangle ^{2+\alpha -2p} \mu _{j}^{-2}|t|^{\gamma _j} \langle y_j \rangle ^{-2-\alpha } \chi _j^p . \end{aligned} \end{aligned}$$

If \(2p \ge 2+\alpha \), it is easy to see \(|N_{\bar{U}}[\varphi _0]| \lesssim |t_0|^{-\epsilon } \sum _{j=2}^kw_{1j}.\)

If \(2p < 2+\alpha \),

$$\begin{aligned} |N_{\bar{U}}[\varphi _0]| \lesssim \sum _{j=2}^k |t|^{\frac{2-\alpha +2p}{2}(\alpha _{j-1} - \alpha _j ) +\sigma } \mu _{j}^{-2} |t|^{\gamma _j} \langle y_j \rangle ^{-2-\alpha } \chi _j^p \lesssim |t_0|^{-\epsilon } \sum _{j=2}^kw_{1j} . \end{aligned}$$

\(\bullet \) Estimate of \(\bar{E}_{11}\). Regrouping the terms in (2.13), one obtain

$$\begin{aligned} \begin{aligned} \bar{E}_{11} =&\sum _{j=2}^{k}p U_j^{p-1}\left[ \sum _{l\ne j}U_l -U_{j-1}(0)\right] \chi _{j}+\sum _{j=2}^{k}\left[ {\bar{U}}^p-\sum _{i=1}^k U_i^p-p U_j^{p-1}\sum _{l\ne j}U_l\right] \chi _{j}\\&+ \left( -\sum _{j=2}^{k}(1-\chi _{j}) \partial _{t} U_{j} \right) +\left[ {\bar{U}}^p-\sum _{j=1}^{k} U_j^p\right] \left( 1-\sum _{i=2}^{k} \chi _{i}\right) \\ :=&J_1+J_2+J_3+J_4. \end{aligned} \end{aligned}$$
(A.25)

Claim:

$$\begin{aligned} \bar{E}_{11}(x,t)\lesssim |t_0|^{-\epsilon }\left( \sum _{j=1}^k w_{1j}+\sum _{j=1}^{k-1}w_{2j}+w_3\right) . \end{aligned}$$
  1. (1)

    Estimate of \(J_1\).

    $$\begin{aligned} J_1=\sum _{j=2}^{k}pU_j^{p-1}\left( \sum _{l\ne j,j-1}U_l\right) \chi _{j}+\sum _{j=2}^kpU_j^{p-1}(U_{j-1}-U_{j-1}(0))\chi _j. \end{aligned}$$

    We will bound each term in the above equation. Fix \(j\ge 2\). If \(i\le j-2\),

    $$\begin{aligned}|pU_j^{p-1}U_i\chi _j|\lesssim \mu _j^{-2}\langle y_j \rangle ^{-4}\mu _{j-2}^{-\frac{n-2}{2}}\chi _j\lesssim |t|^{-\epsilon }w_{1j}.\end{aligned}$$

    If \(i\ge j+1\), by Lemma A.1

    $$\begin{aligned} \begin{aligned}&|p U_j^{p-1}U_i\chi _j|\lesssim U_{j}^p\frac{U_{j+1}}{U_j}\chi _j\\&\quad \lesssim \mu _{j}^{-\frac{n+2}{2}}\langle y_j\rangle ^{-n-2} \left( \lambda _{j+1}^{-\frac{n-2}{2}} \langle y_{j+1}\rangle ^{2-n}\mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le \mu _{0j} \}}+\lambda _{j+1}^{\frac{n-2}{2}} \right) \chi _j\\&\quad \lesssim \mu _{j+1}^{\frac{n-2}{2}}\mu _{j}^{-2} |x|^{2-n}\mathbf {1}_{\{\bar{\mu }_{0,j+1}\le |x|\le \mu _{0j} \}}+(\frac{\lambda _{j+1}}{\lambda _j})^{\frac{n-2}{2}} |t|^{\sigma }w_{1j}\\&\quad \lesssim |t|^{-\epsilon }(w_{2j}+w_{1j}) \end{aligned} \end{aligned}$$
    (A.26)

    when we choose \(\sigma \) small first and then chose \(\epsilon \) small enough. Using \(|U_{j-1}-U_{j-1}(0)|\chi _j\lesssim \mu _{j-1}^{-\frac{n-2}{2}}\lambda _j\), we have

    $$\begin{aligned} |p U_j^{p-1}(U_{j-1}-U_{j-1}(0))\chi _j|\lesssim \mu _{j}^{-2}\langle y_j\rangle ^{-4}\mu _{j-1}^{-\frac{n-2}{2}}\lambda _j \chi _j \lesssim |t|^{-\epsilon }w_{1j}. \end{aligned}$$
    (A.27)
  2. (2)

    Estimate of \(J_2\). By Lemma (A.1), we have

    $$\begin{aligned} \left| {\bar{U}}^p-\sum _{i=1}^k U_{i}^p-p U_j^{p-1}\sum _{l\ne j}U_l\right| \chi _j \lesssim \left( U_{j-1}^p+U_{j+1}^p\right) \chi _j.\end{aligned}$$

    Therein,

    $$\begin{aligned} \begin{aligned} U_{j-1}^p\chi _j&\approx |t|^{\frac{n+2}{2}\alpha _{j-1}} \chi _j \lesssim |t|^{\frac{n+2}{2}\alpha _{j-1}} \mu _{j}^2 |t|^{-\gamma _j} (\frac{\bar{\mu }_j}{\mu _j})^{2+\alpha } w_{1j} \chi _j \\&\approx (\frac{\mu _j}{\mu _{j-1}})^{\frac{2-\alpha }{2}} |t|^{\sigma } w_{1j} \chi _j \lesssim |t|^{-\epsilon }w_{1j}, \end{aligned} \end{aligned}$$

    and

    $$\begin{aligned}U_{j+1}^{p}\chi _j \approx \mu _{j+1}^{\frac{n+2}{2}}|x|^{-2-n}\chi _j\lesssim |t|^{2\sigma }\mu _{j+1}^3\mu _j|x|^{-4}w_{2j} \chi _{j}\lesssim |t|^{-\epsilon }w_{2j}, \end{aligned}$$

    when we take \(\sigma \) small first and then take \(\epsilon \) small enough.

  3. (3)

    Estimate of \(J_3\). For \(j = 2, \dots , k\), notice that

    $$\begin{aligned} |\partial _t U_j|=|\dot{\mu }_j\mu _j^{-\frac{n}{2}}Z_{n+1}(y_j)| \lesssim \mu _j^{-2} \mu _{j-1}^{-\frac{n-2}{2}} \langle y_j\rangle ^{2-n}. \end{aligned}$$
    (A.28)

    The support of \(1-\chi _j\) is contained in \(\{|x|\le \bar{\mu }_{0,j+1}\}\cup \{\frac{1}{2}\bar{\mu }_{0j}\le |x| < \bar{\mu }_{0j}\} \cup \{\bar{\mu }_{0j}\le |x|\}\). In the first set, it is easy to see \(1-\chi _j= \chi (2|x|/\bar{\mu }_{0,j+1})\), then

    $$\begin{aligned} | (1-\chi _j)\partial _t U_j|\lesssim (\frac{\mu _{j+1}}{\mu _j})^{\frac{2-\alpha }{2}} (\frac{\mu _j}{\mu _{j-1}})^{\frac{n-2}{2}} |t|^{\sigma } w_{1,j+1} \chi (2|x|/\bar{\mu }_{0,j+1}) \lesssim |t|^{-\epsilon }w_{1,j+1} . \end{aligned}$$

    In the second set,

    $$\begin{aligned} | \partial _t U_j|\mathbf {1}_{\{\frac{1}{2}\bar{\mu }_{0j}\le |x|< \bar{\mu }_{0j}\}} \lesssim \left( \frac{\mu _{j}}{\mu _{j-1}} \right) ^{\frac{n-4- \alpha }{2}} |t|^{\sigma } w_{1j} \mathbf {1}_{\{\frac{1}{2}\bar{\mu }_{0j}\le |x| < \bar{\mu }_{0j}\}} \lesssim |t_0|^{-\epsilon }w_{1j} . \end{aligned}$$

    In the third set, we split it further to be \(\{\bar{\mu }_{0 j}\le |x|\}=\cup _{m=2}^j\{\bar{\mu }_{0m}\le |x|\le \bar{\mu }_{0,m-1}\}\cup \{\bar{\mu }_{01}\le |x|\}\).

    Since \(|y_j|\) is very large in the third set, (A.28) implies \(|\partial _tU_j|\lesssim \) \(\mu _j^{n-4}\mu _{j-1}^{-\frac{n-2}{2}}|x|^{2-n}\). Note that \(\mu _j^{n-4}\mu _{j-1}^{-\frac{n-2}{2}}\) decreases about j up to some constant multiplicity. Then in \(\{\bar{\mu }_{0 m}\le |x|\le \bar{\mu }_{0,m-1}\}\), \( m = 2\dots , j\),

    $$|\partial _t U_j|\lesssim \mu _m^{n-4}\mu _{m-1}^{-\frac{n-2}{2}} |x|^{2-n} \lesssim |t|^{-\epsilon }w_{2,m-1}.$$

    In \(\{\bar{\mu }_{01}\le |x|\}\), we have

    $$\begin{aligned}|\partial _t U_j|\lesssim \mu _2^{n-4} |x|^{2-n} \lesssim |t|^{-\epsilon }w_{3} .\end{aligned}$$
  4. (4)

    Estimate of \(J_4\). Recall the definition of \(\chi _i\) in (2.4), we have the support of \(J_4\) is contained in the set \(\cup _{m=3}^{k}\{\frac{1}{2}\bar{\mu }_{0m}\le |x|\le \bar{\mu }_{0m}\} \cup \{\frac{1}{2} \bar{\mu }_{02} \le |x| \}\).

    In \(\{\frac{1}{2}\bar{\mu }_{0m}\le |x|\le \bar{\mu }_{0m}\}\), for \(m=3, \dots , k\), by Lemma A.1, one has \(U_m\approx U_{m-1}\approx \mu _{m-1}^{-\frac{n-2}{2}} \gg U_i\) for \(i\ne m, m-1\). Therefore

    $$\begin{aligned}|J_4| \mathbf {1}_{\{\frac{1}{2}\bar{\mu }_{0m}\le |x|\le \bar{\mu }_{0m}\}} \lesssim \mu _{m-1}^{-\frac{n+2}{2}} \mathbf {1}_{\{\frac{1}{2}\bar{\mu }_{0m}\le |x|\le \bar{\mu }_{0m}\}} \lesssim (\frac{\mu _{m-1}}{\mu _m})^{\frac{\alpha -2}{2}} |t|^{\sigma } w_{1m} \lesssim |t_0|^{-\epsilon }w_{1m}.\end{aligned}$$

    In \(\{ \frac{1}{2} \bar{\mu }_{02}\le |x|\}\), by Lemma A.1, when \(\sigma <(n-6)^{-1}\),

    $$\begin{aligned} \begin{aligned}&|J_4| \lesssim U_1^{p-1}U_2\\&\quad \approx \mu _2^\frac{n-2}{2} \left( |x|^{2-n} \mathbf {1}_{\{ \frac{1}{2} \bar{\mu }_{02}\le |x| \le \bar{\mu }_{02} \}} + |x|^{2-n} \mathbf {1}_{\{ \bar{\mu }_{02}\le |x| \le 1 \}}\right. \\&\left. \quad + |x|^{-2-n} \mathbf {1}_{\{1 \le |x| \le \bar{\mu }_{01}\} } + |x|^{-2-n} \mathbf {1}_{ \{ \bar{\mu }_{01} \le |x| \}} \right) \\&\quad \lesssim |t_{0}|^{-\epsilon } \left( w_{12} + w_{21} + w_{11} +w_{3} \right) . \end{aligned} \end{aligned}$$

\(\square \)

Lemma A.5

There exist \(\sigma >0\) small enough and \(t_0\) negative enough, such that for \(t<t_0\),

  1. (1)

    In \( \{ |x|\le \bar{\mu }_{0i} \} \), \( i = 1,\dots , k\), we have \(w_{1j}^* \lesssim w_{1i}^*\) for \(j = 1, \dots , i-1\) (it is vacuum if \(i=1\))

  2. (2)

    In \(\{ \bar{\mu }_{0i} \le |x| \}\), \( i = 1,\dots , k\), we have \(w_{1j}^* \lesssim w_{1i}^*\) for \(j = i+1, \dots , k\) (it is vacuum if \(i=k\)).

  3. (3)

    In \(\{|x|\le \bar{\mu }_{0j} \}\), \(w_3^* \lesssim w_{1j}^*\) for \(j = 1, \dots , k\). In \(\{ |x|\ge |t|^{\frac{1}{2}} \}\), \(w_3^* > rsim w_{1j}^*\) for \(j = 1, \dots , k\) when \(\delta \le (n-2-\alpha )^{-1}\).

Consequently,

$$\begin{aligned} \sum _{j=1}^kw_{1j}^*+w_{3}^*\lesssim {\left\{ \begin{array}{ll} w_{1k}^{*} &{} \text {if } |x| \le \bar{\mu }_{0k}, \\ w_{1i}^*+w_{1,i+1}^*&{} \text {if }\bar{\mu }_{0,i+1}\le |x|\le \bar{\mu }_{0i}, i=1,\cdots ,k-1,\\ w_{11}^{*} + w_{3}^*&{}\text {if }\bar{\mu }_{01}\le |x| \le |t|^{\frac{1}{2}} , \\ w_{3}^*&{}\text {if } |x| \ge |t|^{\frac{1}{2}} . \end{array}\right. } \end{aligned}$$
(A.29)

Proof

(1) For \(j = 1, \dots , i-1\), in \(\{|x|\le \bar{\mu }_{0i} \}\), we have \(w^*_{1j}(x,t)= |t|^{\gamma _j}\le |t|^{\gamma _{i-1}}\) and \(w^*_{1i}\ge |t|^{\gamma _i}\mu _i^\alpha \bar{\mu }_i^{-\alpha }\). It is easy to verify \(|t|^{\gamma _{i-1}}\lesssim |t|^{\gamma _i}\mu _i^\alpha \bar{\mu }_i^{-\alpha }\) if \(\alpha <n-6\).

(2) For \(j = i+1, \dots , k\), in \(\{ \bar{\mu }_{0i}\le |x|\le |t|^{\frac{1}{2}} \}\), \(w_{1j}^*(x,t)= |t|^{\gamma _j}\mu _j^\alpha \bar{\mu }_j^{n-2-\alpha }|x|^{2-n}\approx |t|^{\gamma _j^*}|x|^{2-n}\le |t|^{\gamma _i^*}|x|^{2-n}\approx w_{1i}^*(x,t)\), because \(\gamma _j^*\) is strictly decreasing on j, i.e.

$$\begin{aligned} \gamma _{1}^*> \gamma _{2}^*> \cdots > \gamma _k^*.\end{aligned}$$

In \(\{|x|\ge |t|^{\frac{1}{2}} \}\), we have \(w_{1j}^* \lesssim w_{1i}^*\) by the same reason.

(3) Due to (1), we only need to check \(w_3^* \lesssim w_{11}^*\) in \(\{|x|\le \bar{\mu }_{01} \}\). It is straightforward to have \(R|t|^{-1-\sigma +\delta (4-n)} \lesssim |t|^{-1-\sigma }\langle x \rangle ^{-\alpha }\) in \(\{|x|\le \bar{\mu }_{01} \}\). Due to (2), in \(\{|x|\ge |t|^{\frac{1}{2}} \}\), we only need to check \(w_3^* > rsim w_{11}^*\), which is easy to get when \(\delta \le (n-2-\alpha )^{-1}\). \(\square \)

Lemma A.6

There exists \(t_0\) negative enough such that

  1. (1)

    In \(\{\bar{\mu }_{0,i+1}\le |x| \}\), we have \(w^*_{2j}\lesssim w^*_{2i}\) for \(j=i+1, \dots , k-1\) (it is vacuum if \(i=k, k-1\)). In \(\{|x|\le \bar{\mu }_{0i} \}\), we have \(w_{2,i-1}^* > rsim w_{2j}^*\) for \(j= 1, \dots , i-2\) (it is vacuum if \(i =1,2 \)).

  2. (2)

    In \(\{|x|\ge \bar{\mu }_{01} \}\), \(w_{2j}^*\lesssim w_3^*\) for \( j = 1, \dots , k-1\).

Consequently

$$\begin{aligned} \sum _{j=1}^{k-1}w_{2j}^*\lesssim {\left\{ \begin{array}{ll} w_{2,k-1}^{*} &{}\text {if } |x|\le \bar{\mu }_{0k}, \\ w_{2i}^*+w_{2,i-1}^* &{}\text {if }\bar{\mu }_{0,i+1} \le |x|\le \bar{\mu }_{0i}, \text{ for } i=2, \dots , k-1, \\ w_{21}^{*} &{}\text {if }\bar{\mu }_{02}\le |x|\le \bar{\mu }_{01}, \\ w_3^*&{}\text {if }|x|\ge \bar{\mu }_{01}. \end{array}\right. } \end{aligned}$$
(A.30)

Proof

(1) In \(\{\bar{\mu }_{0,i+1} \le |x|\le \bar{\mu }_{0i} \}\), it follows from (4.26) that \(w_{2j}^*= |t|^{-2\sigma }\mu _{0,j+1}^{\frac{n}{2}-2}\mu _{0,j-1}|x|^{2-n}\) for \(j=i+1, \dots , k-1\) and \(w_{2i}^*=|t|^{-2\sigma }\mu _{0,i+1}^{\frac{n}{2}-2}\mu _{0i}^{-1}|x|^{4-n}\).

$$\begin{aligned} \frac{w_{2i}^{*}}{w_{2j}^{*}} > rsim (\frac{\mu _{0,i+1}}{\mu _{0,i+2}})^{\frac{n}{2} -2} \frac{\mu _{0,i+1}}{\mu _{0i}} \approx |t|^{(\frac{n}{2} -2)(\alpha _{i+2}- \alpha _{i+1}) - (\alpha _{i+1} -\alpha _{i})} > rsim 1 \end{aligned}$$

where we have used that \((\frac{n}{2} -2)(\alpha _{i+2}- \alpha _{i+1}) - (\alpha _{i+1} -\alpha _{i})= \frac{(n-4)^2 +4}{(n-6)^2} (\frac{n-2}{n-6})^{i-1}\). Thus \(w_{2j}^*\lesssim w_{2i}^*\). It is easy to see that \(w_{2j}^*\lesssim w_{2i}^*\) also holds in \(\{|x|>\bar{\mu }_{0i} \}\). This deduces the first part. The second parts holds obviously by (4.26).

(2) In \(\{\bar{\mu }_{01}\le |x| \le |t|^{\frac{1}{2}}\}\), by the definition (4.26) and (4.27), it is easy to see that \(w_{2j}^{*}\lesssim w_{3}^{*}\) for \(j=1,\dots , k-1\) since \(w_{2j^*}\) have more time decay than \(w_3^*\). In \(\{|x| \ge |t|^{\frac{1}{2}} \}\), we have \(w_{2j}^{*}\lesssim w_{3}^{*}\) by the similar reason. \(\square \)

Remark A.1

Lemma A.5 and A.6 help us consider much less terms in the topology of the outer problem in some special domains.

Lemma A.7

There exist \(\sigma , \epsilon >0\) small and \(t_0\) negative enough such that

$$\begin{aligned} \Vert {\mathcal T} ^{out}[V\Psi ]\Vert _{\alpha ,\sigma }^{out,*} \lesssim R^{-1} \Vert \Psi \Vert _{\alpha ,\sigma }^{out,*}. \end{aligned}$$
(A.31)

Proof

Without loss of generality, we assume \(\Vert \Psi \Vert _{\alpha ,\sigma }^{out,*}=1\). By (3.9), we rewrite V as

$$\begin{aligned} V=pu_*^{p-1}(1-\sum _{j=1}^k\zeta _j)+\sum _{j=1}^k\zeta _jp(u_*^{p-1}-U_j^{p-1}) . \end{aligned}$$
(A.32)

We shall handle terms respectively.

Consider the first term in (A.32). Using (3.3), the support of \(1-\sum _{j=1}^k\zeta _j\) is \(\cup _{i=2}^{k}\{R\mu _{0i}\le |x|\le 2R^{-1}\mu _{0,i-1}\} \cup \{R\mu _{01}\le |x|\}\).

\(\bullet \) In \(\{R\mu _{01}\le |x|\}\), we have \(p u_*^{p-1}\lesssim \mu _1^2|x|^{-4}\le R^{-1}|x|^{-3}\) by Lemma A.1 and A.2. Split the region into \(\{R\mu _{01}\le |x|\le \bar{\mu }_{01}\}\cup \{\bar{\mu }_{01}\le |x| \le |t|^{\frac{1}{2}}\} \cup \{|x|\ge |t|^{\frac{1}{2}}\}\). In the first set, one has \(|\Psi |\lesssim w_{11}^*+w_{12}^*+w_{21}^*\) by (A.29) and (A.30). Notice \(w_{12}^* + w_{21}^* \lesssim w_{11}^*\) in \(\{R\mu _{01}\le |x| \le \bar{\mu }_{01}\}\). Therefore

$$\begin{aligned} \big | p u_{*}^{p-1} (1-\sum _{j=1}^{k} \zeta _{j}) \Psi \big | \lesssim R^{-1} |x|^{-3} w_{11}^* \lesssim R^{-1} w_{11} . \end{aligned}$$
(A.33)

In the second set, by (A.29) and (A.30), one has \(|\Psi |\lesssim w_{11}^{*} + w_3^* \). Then

$$\begin{aligned} \big | pu_{*}^{p-1} (1-\sum _{j=1}^{k} \zeta _{j}) \Psi \big | \lesssim \ R^{-1} |x|^{-3} (w_{11}^{*} + w_3^* ) \lesssim \ R^{-1} (w_{11} + w_3 ) . \end{aligned}$$
(A.34)

In the third set, similarly we have

$$\begin{aligned} \big | pu_{*}^{p-1} (1-\sum _{j=1}^{k} \zeta _{j}) \Psi \big | \lesssim R^{-1} |x|^{-3} w_3^* \lesssim \ R^{-1} w_3 . \end{aligned}$$
(A.35)

\(\bullet \) Consider the region \(\{R\mu _{0i}\le |x| \le 2R^{-1}\mu _{0,i-1}\}\), \(i = 2, \dots , k\). We divide it further into two parts, \(\{R\mu _{0i}\le |x|\le \bar{\mu }_{0i}\}\cup \{\bar{\mu }_{0i}\le |x|\le 2R^{-1}\mu _{0,i-1}\}\). In \(\{R\mu _{0i}\le |x| \le \bar{\mu }_{0i}\}\), we have \(p u_*^{p-1}\lesssim \mu _i^{2}|x|^{-4}\) by Lemma A.1 and A.2. Moreover, one has \(|\Psi |\le w_{1i}^*+w_{1,i+1}^*+w_{2,i-1}^*+w_{2i}^*\) by Lemma A.5 and A.6. One readily has \(w_{1,i+1}^* \lesssim w_{1i}^* \) in \(\{ R\mu _{0i}\le |x| \le \bar{\mu }_{0i} \}\). Thus

$$\begin{aligned} \begin{aligned} \big | p u_{*}^{p-1} (1-\sum _{j=1}^{k} \zeta _{j}) \Psi \big | \lesssim&\, \mu _{i}^{2} |x|^{-4 } \left( w_{1i}^* + w_{1,i+1}^* + w_{2,i-1}^* + w_{2i}^* \right) \\ \lesssim&\, \mu _{i}^{2} |x|^{-4 } \left( w_{1i}^* + w_{2,i-1}^* + w_{2i}^* \right) \\ \lesssim&\, R^{-1} \left( w_{1i} + w_{2i} \right) , \end{aligned} \end{aligned}$$
(A.36)

where we have used the fact that in \(\{R\mu _{0i}\le |x|\le \bar{\mu }_{0i} \}\),

$$\begin{aligned}&\mu _i^{2}|x|^{-4}w_{1i}^*\lesssim |t|^{\gamma _i}\mu _i^{2+\alpha }|x|^{-4-\alpha } \lesssim R^{-2}w_{1i}, \\&\mu _i^{2}|x|^{-4}w_{2,i-1}^* \lesssim \mu _i^{2}|x|^{-4}|t|^{-2\sigma }\mu _{i-1}^{1-\frac{n}{2}} \lesssim R^{\alpha -2} |t|^{-\sigma } w_{1i}, \\&\mu _i^{2}|x|^{-4}w_{2,i}^* \lesssim \mu _i^{2}|x|^{-4}|t|^{-2\sigma }\mu _{i+1}^{\frac{n}{2}-2}\mu _{i}^{-1} |x|^{4-n} \lesssim R^{-2}w_{2i}. \end{aligned}$$

In the other part \(\{\bar{\mu }_{0i} \le |x| \le 2R^{-1}\mu _{0,i-1}\}\), we have \(p u_*^{p-1}\lesssim U_{i-1}^{p-1}\lesssim \mu _{i-1}^{-2} \) and \(w_{2,i-2}^*\lesssim w_{1,i-1}^*\) (which is vacuum if \(i=2\)). Then

$$\begin{aligned} \begin{aligned} \big | p u_*^{p-1} (1-\sum _{j=1}^{k} \zeta _{j}) \Psi \big | \lesssim&\, \mu _{i-1}^{-2} \left( w_{1,i-1}^* + w_{1i}^* + w_{2,i-2}^* + w_{2,i-1}^* \right) \\ \lesssim&\, \mu _{i-1}^{-2} \left( w_{1,i-1}^* + w_{1i}^* + w_{2,i-1}^* \right) \\ \lesssim&\, \left( \mu _{i-1}^{-2} |t|^{\gamma _{i-1}} \mathbf {1}_{\{ |x| \le 2R^{-1}\mu _{i-1} \}} + R^{-2}w_{2,i-1} \right) , \end{aligned} \end{aligned}$$
(A.37)

where we have used the fact that in \(\{\bar{\mu }_{0i}\le |x|\le 2R^{-1}\mu _{0,i-1}\}\),

$$\begin{aligned}&\mu _{i-1}^{-2}w_{2,i-1}^*\lesssim \mu _{i-1}^{-2}|t|^{-2\sigma }\mu _i^{\frac{n}{2}-2}\mu _{i-1}^{-1}|x|^{4-n}\lesssim R^{-2} |t|^{-2\sigma }\mu _i^{\frac{n}{2}-2}\mu _{i-1}^{-1}|x|^{2-n}\lesssim R^{-2}w_{2,i-1} , \\&\mu _{i-1}^{-2}w_{1i}^*\le \mu _{i-1}^{-2}|t|^{\gamma _i}\mu _i^{\alpha }\bar{\mu }_i^{n-2-\alpha }|x|^{2-n} \lesssim |t|^{\gamma _i+2\sigma }\mu _i^{\frac{\alpha }{2}+1}\mu _{i-1}^{\frac{n-4-\alpha }{2}}w_{2,i-1}\lesssim |t|^{-\epsilon }w_{2,i-1} . \end{aligned}$$

By Lemma B.2,

$$\begin{aligned} \begin{aligned}&{\mathcal T} ^{out} [ \mu _{i-1}^{-2} |t|^{\gamma _{i-1} } \mathbf {1}_{\{|x|\le 2R^{-1}\mu _{0,i-1}\}} ]\\ \lesssim&\, {\left\{ \begin{array}{ll} |t|^{\gamma _{i-1}} R^{-2} &{} \text{ if } |x|\le R^{-1} \mu _{0,i-1}, \\ \mu _{i-1}^{-2} |t|^{\gamma _{i-1}} (R^{-1} \mu _{i-1})^n |x|^{2-n} &{} \text{ if } R^{-1} \mu _{0,i-1} \le |x| \le |t|^{\frac{1}{2}}, \\ R^{-n} (|x|^2)^{(2-n)\alpha _{i-1} +\gamma _{i-1}} |x|^{2-n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2}} . \end{array}\right. }\\ \lesssim&\, R^{-1} w_{1,i-1}^*. \end{aligned} \end{aligned}$$
(A.38)

Next we consider the second term in (A.32). Recall the support of \(\zeta _j\) (3.4) is contained in \(\{ R^{-1} \mu _{0j} \le |x| \le 2R \mu _{0j}\}\), which are mutually disjoint.

\(\bullet \) For \(j=1\), we have \(|\zeta _1(u_*^{p-1}-U_1^{p-1})|\lesssim U_2^{p-1}\zeta _{1} \lesssim \mu _2^{2}|x|^{-4}\mathbf {1}_{\{ R^{-1}\mu _{01} \le |x| \le 2 R\mu _{01}\}}\) since \(\varphi _{0} =0\) in the support of \(\zeta _{1}\). Then

$$\begin{aligned} \left| \zeta _{1} ( u_*^{p-1} - U_j^{p-1} ) \Psi \right| \lesssim \mu _2^2 |x|^{-4} \mathbf {1}_{\{ R^{-1}\mu _{01} \le |x| \le 2 R\mu _{01} \}} \left( w_{11}^* + w_{12}^* + w_{21}^* \right) \lesssim |t|^{-\epsilon } w_{11} , \end{aligned}$$
(A.39)

where we have used the fact that in \(\{R^{-1}\mu _{01}\le |x|\le 2R\mu _{01}\}\),

$$\begin{aligned}&\mu _2^2|x|^{-4}w_{11}^*\lesssim \mu _2^2|x|^{-4}|t|^{\gamma _1}(1+|x|)^{-\alpha }\le R^{4}\mu _2^2 w_{11}\le R^4|t|^{-2\epsilon } w_{11},\\&\mu _2^2|x|^{-4}w_{21}^*\lesssim \mu _2^2|x|^{-4} |t|^{-2\sigma }\mu _2^{\frac{n}{2}-2}|x|^{2-n}\lesssim R^{n+2}|t|^{-2\epsilon }w_{11},\\&\mu _2^2|x|^{-4}w_{12}^*\lesssim \mu _2^2|x|^{-4}|t|^{\gamma _2}\mu _2^\alpha \bar{\mu }_2^{n-2-\alpha }|x|^{2-n}\lesssim R^{n+2}|t|^{-2\epsilon }w_{11}. \end{aligned}$$

\(\bullet \) For \( j =2,\dots , k\), we have \(|\zeta _j(u_*^{p-1}-U_j^{p-1})|\lesssim (U_{j-1}^{p-1}+U_{j+1}^{p-1} + \varphi _{0j}^{p-1})|\zeta _j|\lesssim \mu _{j-1}^{-2} |\zeta _j|\) where we have used the fact that \(\varphi _{0}= \varphi _{0j} \chi _{j} \) in \(\{ R^{-1} \mu _{0j} \le |x| \le 2R \mu _{0j}\}\) and \(U_{j+1}\) is vacuum if \(j=k\). Then

$$\begin{aligned} \left| \zeta _{j} ( u_{*}^{p-1} - U_j^{p-1} ) \Psi \right| \lesssim \mu _{j-1}^{-2} \left( w_{1j}^* + w_{1,j+1}^* + w_{2,j-1}^* + w_{2j}^* \right) |\zeta _j| \lesssim |t|^{-\epsilon } \left( w_{1j} + w_{2j} \right) , \end{aligned}$$
(A.40)

where we have used the fact that in \(\{R^{-1}\mu _{0j}\le |x|\le 2R\mu _{0j}\}\), \(w_{2,j-1}^* \lesssim w_{1j}^*\) and

$$\begin{aligned}&\mu _{j-1}^{-2}w_{1j}^*\lesssim \mu _{j-1}^{-2}|t|^{\gamma _j}\lesssim \lambda _j^{2}\langle y_j\rangle ^{2+\alpha }w_{1j}\lesssim R^{2+\alpha }|t|^{-2 \epsilon }w_{1j},\\&\mu _{j-1}^{-2}w_{1,j+1}^*\lesssim \mu _{j-1}^{-2}|t|^{\gamma _{j+1}}\mu _{j+1}^\alpha \bar{\mu }_{j+1}^{n-2-\alpha }|x|^{2-n}\lesssim \mu _{j-1}^{-2}\mu _j^{1-\frac{\alpha }{2}}\mu _{j+1}^{1+\frac{\alpha }{2}}|t|^{\sigma }w_{2j}\lesssim |t|^{-\epsilon }w_{2j},\\&\mu _{j-1}^{-2}w_{2j}^*\lesssim \mu _{j-1}^{-2}|t|^{-2\sigma }\mu _{j+1}^{\frac{n}{2}-2}\mu _j^{-1}|x|^{4-n}\lesssim \mu _{j-1}^{-2}(R\mu _i)^2w_{2j}\lesssim R^2|t|^{-2\epsilon }w_{2j}. \end{aligned}$$

Combining the above calculations of the two terms in (A.32), we get the conclusion. \(\square \)

Lemma A.8

There exist \(\sigma ,\epsilon >0\) small and \(t_0\) negative enough such that

$$\begin{aligned}\Vert \mathcal {N}[\vec {\phi }, \Psi , \vec {\mu }_{1}]\Vert ^{out}_{\alpha ,\sigma }\lesssim |t_0|^{-\epsilon }\left( \Vert \vec {\phi }\Vert ^{in,*}_{a,\sigma }+\Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma }\right) ^p.\end{aligned}$$

Proof

By (3.9) and some elementary inequality

$$\begin{aligned} |\mathcal {N}[\vec {\phi },\Psi ,\vec {\mu }_{1}]|\lesssim \sum _{j=1}^k \mu _j^{-\frac{n+2}{2}}|\phi _j|^p\eta _j+|\Psi |^p. \end{aligned}$$
(A.41)

For the first part on the RHS, recalling (A.12), we obtain

$$\begin{aligned} \begin{aligned} \mu _j^{-\frac{n+2}{2}}|\phi _j|^p\eta _j \lesssim&\, |t|^{\gamma _jp} \frac{R^{(n+1-a)p}}{\langle y_j\rangle ^{(n+1)p}} \mathbf {1}_{\{|x|\le 4R\mu _{0j} \}}\left( \Vert \phi _j\Vert ^{in,*}_{j,a,\sigma } \right) ^p\\&\quad \lesssim R^{(n+1-a)p}|t|^{-2\epsilon } w_{1j} \left( \Vert \phi _j\Vert ^{in,*}_{j,a,\sigma } \right) ^p . \end{aligned} \end{aligned}$$
(A.42)

For the second part on the RHS of (A.41),

\(\bullet \) In \(\{|x|\ge \bar{\mu }_{01} \}\), by (A.29), we have \(|\Psi |\lesssim (w_{11}^{*} + w_3^{*}) \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma }\) in \( \{ \bar{\mu }_{01} \le |x| \le |t|^{\frac{1}{2}} \}\) and \(|\Psi |\lesssim w_3^{*} \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma }\) in \( \{ |x| > |t|^{\frac{1}{2}}\}\). Notice

$$\begin{aligned} \begin{aligned} (w_3^*)^p =&\, R^{p-1}|t|^{1+(1-p)\sigma } |x|^{-4} w_3\lesssim |t|^{-1}w_3 \text{ if } |x| > |t|^{\frac{1}{2}} , \\ (w_3^*)^p =&\, R^{p-1} |t|^{-(1+\sigma )(p-1)} |x|^{-\frac{2n-12}{n-2}} w_{3} \lesssim |t|^{-\epsilon } w_{3} \text{ if } \bar{\mu }_{01} \le |x| \le |t|^{\frac{1}{2}} , \\ (w_{11}^*)^p =&\, R^{-1} |t|^{-\frac{4}{n-2}(1+\sigma ) +\delta (n-2-p\alpha )} w_{3} \lesssim |t|^{-\epsilon } w_{3} \text{ if } \bar{\mu }_{01} \le |x| \le |t|^{\frac{1}{2}}, \end{aligned} \end{aligned}$$

where we take \(\delta \le 2(n-2)^{-2}\) in the last formula. Thus

$$\begin{aligned} |\Psi |^p \lesssim \ |t|^{-\epsilon } w_3 \left( \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma } \right) ^p . \end{aligned}$$
(A.43)

\(\bullet \) In \(\{1\le |x|\le \bar{\mu }_{01}\}\), we have \(|\Psi |\lesssim (w_{11}^*+w_{12}^*+w_{21}^*)\Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma }\lesssim w_{11}^*\Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma }\) since \( \left( w_{12}^* + w_{21}^* \right) \mathbf {1}_{\{1\le |x|\le \bar{\mu }_{01}\}} \lesssim w_{11}^*\). Therefore

$$\begin{aligned} |\Psi |^p \lesssim \ \left( w_{11}^*\right) ^p \left( \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma } \right) ^p \lesssim |t|^{-(1+\sigma )\frac{4}{n-2} +2\delta } w_{11} \left( \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma } \right) ^p \lesssim |t|^{-\epsilon } w_{11} \left( \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma } \right) ^p , \end{aligned}$$
(A.44)

for \(\delta \le (n-2)^{-1}\).

\(\bullet \) In \(\{\bar{\mu }_{02}\le |x|\le 1\}\), we have

$$\begin{aligned} \begin{aligned}&(w_{11}^*)^p\lesssim |t|^{-(1+\sigma )p}\lesssim |t|^{-\epsilon }w_{11}, \\&(w_{12}^*)^p\lesssim |t|^{\gamma _2p}\bar{\mu }_2^{n+2}|x|^{-n-2}\lesssim |t|^{\gamma _2p}\bar{\mu }_2^{n-2}|x|^{2-n}\lesssim |t|^{-\epsilon }w_{21}, \\&(w_{21}^*)^p\lesssim |t|^{-2\sigma p}\mu _2^{(\frac{n}{2}-2)p}|x|^{(4-n)p}\lesssim |t|^{-2\sigma p}\mu _2^{\frac{n}{2}-1}|x|^{2-n}\lesssim |t|^{-\epsilon } w_{21}, \end{aligned} \end{aligned}$$

where we have used \(n-2\le (n-4)p\) when \(n\ge 6\) in the last inequality. Then

$$\begin{aligned} |\Psi |^p\lesssim [(w_{11}^*)^p + (w_{12}^*)^p+(w_{21}^*)^p](\Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma })^p\lesssim |t|^{-\epsilon }(w_{11}+w_{21})(\Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma })^p. \end{aligned}$$
(A.45)

\(\bullet \) In \(\{\bar{\mu }_{0,i+1}\le |x|\le \bar{\mu }_{0i}\}\), \(i=2,\dots , k\), we have

$$\begin{aligned} (w_{1i}^*)^p\lesssim&\, |t|^{\gamma _ip}\langle y_i\rangle ^{-\alpha p} \lesssim \mu _{i}^{2} |t|^{\gamma _{i}(p-1)} \langle y_i \rangle ^{2+\alpha -\alpha p} w_{1i} \lesssim |t|^{-\sigma (p-1)} \mu _{i}\mu _{i-1}^{-1} w_{1i} \lesssim |t|^{-\epsilon }w_{1i} \end{aligned}$$

provided \(\epsilon <\frac{2}{n-6}\).

$$\begin{aligned} (w_{1,i+1}^*)^p\lesssim&\ |t|^{p \gamma _{i+1}}\bar{\mu }_{i+1}^{n+2}|x|^{-n-2}\lesssim \mu _{i}^{-\frac{n+2}{2}}|t|^{-\sigma p}\bar{\mu }_{i+1}^{n-2}|x|^{2-n}\\ \approx&\ \lambda _{i+1}\mu _{i+1}^{\frac{n}{2}-2}\mu ^{-1}_i|t|^{-\sigma p}|x|^{2-n}\lesssim |t|^{-\epsilon }w_{2i} \end{aligned}$$

provided \(\epsilon <-2\sigma +\sigma p+\frac{2}{n-6}\).

$$\begin{aligned} (w_{2,i-1}^*)^p\lesssim&\ |t|^{-2\sigma p}\mu _{i-1}^{-\frac{n+2}{2}}\lesssim |t|^{-2\sigma p}\mu _{i-1}^{-\frac{n+2}{2}}(\frac{\bar{\mu }_i}{\mu _i})^{2+\alpha }\langle y_i\rangle ^{-2-\alpha }\end{aligned}$$
(A.46)
$$\begin{aligned} \lesssim&\ |t|^{-2\sigma p}(\frac{\mu _i}{\mu _{i-1}})^{1-\frac{\alpha }{2}}\mu _{i}^{-2}\mu _{i-1}^{1-\frac{n}{2}}\langle y_i\rangle ^{-2-\alpha }\lesssim |t|^{-\epsilon }w_{1i} \end{aligned}$$
(A.47)

provided \(\epsilon <\frac{1}{n-6}\).

$$\begin{aligned} (w_{2i}^*)^p\lesssim&\ |t|^{-2\sigma p}\mu _{i+1}^{(\frac{n}{2}-2)p}\mu _i^{-p}|x|^{(4-n)p}\lesssim |t|^{-2\sigma p}\mu _{i+1}^{(\frac{n}{2}-2)p}\mu _i^{-p}|x|^{2-n}\bar{\mu }_{i+1}^{(4-n)p-(2-n)}\end{aligned}$$
(A.48)
$$\begin{aligned} \approx&\ \lambda _{j+1} |t|^{-2\sigma p}\mu _{i+1}^{\frac{n}{2}-2}\mu _i^{-1}|x|^{2-n}\lesssim |t|^{-\epsilon }w_{2i} \end{aligned}$$
(A.49)

provide \(\epsilon <\frac{2}{n-6}\). Here we have used \((4-n)p-(2-n)\le 0\) when \(n\ge 6\).

Therefore, for \( i =2,\dots , k\),

$$\begin{aligned} |\Psi |^p \lesssim&\left( w_{1i}^* + w_{1,i+1}^* + w_{2,i-1}^* + w_{2i}^* \right) ^p \left( \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma } \right) ^p \lesssim |t|^{-\epsilon } \left( w_{1i} + w_{2i} \right) \left( \Vert \Psi \Vert ^{out,*}_{\alpha ,\sigma } \right) ^p, \end{aligned}$$

where \(w_{1,i+1}^*, w_{2i}^* \) are vacuum if \(i=k\) and \( w_{1,i+1}^*\) are vacuum if \(i=k,k-1\). \(\square \)

Proof of Proposition 4.1

This is a combination of results in Lemma A.3, A.4, A.7, A.8 and Lemma 4.4, 4.54.6. \(\square \)

Appendix B. Some estimates for the outer problem

1.1 Basic estimates

Let G(xt) denote the standard heat kernel on \(\mathbb {R}^n\), that is

$$\begin{aligned} G(x,t)=\frac{1}{(4\pi t)^{n/2}}e^{-\frac{|x|^2}{4t}} . \end{aligned}$$
(B.1)

Recall the \({\mathcal T} ^{out}[g](x,t)\) defined by (4.19).

Lemma B.1

Suppose \(n >2\), \( a\ge 0\), \(d_1\le d_2\le \frac{1}{2}\) and b satisfies

$$\begin{aligned} {\left\{ \begin{array}{ll} \frac{n}{2}-b+d_2(a-n)>1 &{} \text{ if } a<n, \\ \frac{n}{2}-b+d_1(a-n)>1 &{} \text{ if } a\ge n, \end{array}\right. } \end{aligned}$$
(B.2)

\( 0\le c_1,c_2\le c_{**}\). Then there exists C depending on \(n,a,b,d_1,d_2,c_{**}\) such that for \(t<-1\)

$$\begin{aligned}{\mathcal T} ^{out}\left[ \frac{ |t|^{b} }{|x|^{a} } \mathbf {1}_{\{c_1|t|^{d_1}\le |x|\le c_2|t|^{d_2}\}}\right] (0,t)\le C{\left\{ \begin{array}{ll}|t|^{b}(c_1|t|^{d_1})^{2-a}&{}\text {if }a\in (2,\infty ), \\ |t|^{b}\ln (c_2|t|^{d_2}/(c_1|t|^{d_1})) &{}\text {if }a=2, \\ |t|^{b}(c_2|t|^{d_2})^{2-a}&{}\text {if }a\in [0,2).\end{array}\right. }\end{aligned}$$

Proof

Using (B.1), we obtain

$$\begin{aligned}&\int _{-\infty }^t\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{c_1|s|^{d_1}\le |y|\le c_2|s|^{d_2}\}}dyds\nonumber \\&\quad \approx \int _{-\infty }^t\int _{c_1|s|^{d_1}}^{c_2|s|^{d_2}}\frac{|s|^{b}}{(t-s)^{n/2}}e^{-\frac{r^2}{4(t-s)}}r^{n-1-a}drds \approx \int _{-\infty }^t\int _{\frac{c_1^2|s|^{2d_1}}{4(t-s)}}^{\frac{c_2^2|s|^{2d_2}}{4(t-s)}}e^{-z}z^{\frac{n-a-2}{2}}\frac{|s|^{b}}{(t-s)^{a/2}}dzds\nonumber \\&\quad =\int _{-\infty }^t\frac{|s|^{b}}{(t-s)^{a/2}}F\left( \frac{c_1^2|s|^{2d_1}}{4(t-s)},\frac{c_2^2|s|^{2d_2}}{4(t-s)}\right) ds, \end{aligned}$$
(B.3)

where

$$\begin{aligned}F(A,B):=\int _A^Be^{-z}z^{\frac{n-a-2}{2}}dz. \end{aligned}$$

We shall split (B.3) into four integrals \(J_1,J_2,J_3,J_4\) according to the regions of s. First, in the region \(s\in [t-c_1^2|t|^{2d_1},t]\), one has \(|s-t|\le c_1^2 |t|\) when \(t<-1\). Therefore

$$\begin{aligned} \begin{aligned} J_1=&\int _{t-c_1^2|t|^{2d_1}}^t\frac{|s|^{b}}{(t-s)^{a/2}}F\left( \frac{c_1^2|s|^{2d_1}}{4(t-s)},\frac{c_2^2|s|^{2d_2}}{4(t-s)}\right) ds \\ \lesssim&\ |t|^{b}\int _{t-c_1^2|t|^{2d_1}}^t\frac{1}{(t-s)^{a/2}} e^{-\frac{c_1^2|t|^{2d_1}}{4(t-s)} (1+c_{**}^2)^{2(d_1)^{-}} }ds \\ \approx&\ c_1^{2-a}|t|^{b+d_1(2-a)}\int _{\frac{(1+c_{**}^2)^{2(d_1)^{-}}}{4}}^{\infty }e^{-\tilde{s}}\tilde{s}^{\frac{a}{2} -2}d\tilde{s}\lesssim c_1^{2-a}|t|^{b+d_1(2-a)}, \end{aligned} \end{aligned}$$

where \((d_1)^{-}=\min \{0,d_1\}\).

Second, in the region \(s\in [t-c_2^2|t|^{2d_2},t-c_1^2|t|^{2d_1}]\),

$$\begin{aligned} \begin{aligned} J_2=&\int _{t-c_2^2|t|^{2d_2}}^{t-c_1^2|t|^{2d_1}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left( \frac{c_1^2|s|^{2d_1}}{4(t-s)},\frac{c_2^2|s|^{2d_2}}{4(t-s)}\right) ds \\ \lesssim&\int _{t-c_2^2|t|^{2d_2}}^{t-c_1^2|t|^{2d_1}}\frac{|s|^{b}}{(t-s)^{a/2}} F\left( \frac{c_1^2|t|^{2d_1}(1+c_{**}^2)^{2(d_1)^{-}}}{4(t-s)},\frac{c_2^2|t|^{2d_2}(1+c_{**}^2)^{2(d_{2})^{+}}}{4(t-s)}\right) ds \\ \lesssim&\int _{t-c_2^2|t|^{2d_2}}^{t-c_1^2|t|^{2d_1}}\frac{|t|^{b}}{(t-s)^{a/2}} {\left\{ \begin{array}{ll} 1 &{} \text{ if } a<n, \\ \left| \ln \left( \frac{c_1^2|t|^{2d_1}(1+c_{**}^2)^{2(d_1)^{-}}}{4(t-s)} \right) \right| &{} \text{ if } a=n, \\ \left( \frac{c_1^2 |t|^{2d_1}}{t-s} \right) ^{\frac{n-a}{2}} &{} \text{ if } a>n, \end{array}\right. } ds\\ \lesssim&{\left\{ \begin{array}{ll}c_1^{2-a}|t|^{b+d_1(2-a)}&{}\text {if }2<a,\\ |t|^{b}\log (c_2/c_1|t|^{2(d_2-d_1)}) &{}\text {if }a=2,\\ c_2^{2-a}|t|^{b+d_2(2-a)}&{}\text {if }0\le a<2, \end{array}\right. } \end{aligned} \end{aligned}$$
(B.4)

where \((d_2)^{+} = \max \{0,d_2\}\).

Third, when \(s\in [2t-c_2^2|t|^{2d_2},t-c_2^2|t|^{2d_2}]\),

$$\begin{aligned} \begin{aligned} J_3=&\int _{2t-c_2^2|t|^{2d_2}}^{t-c_2^2|t|^{2d_2}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left( \frac{c_1^2|s|^{2d_1}}{4(t-s)},\frac{c_2^2|s|^{2d_2}}{4(t-s)}\right) ds \\ \lesssim&\int _{2t-c_2^2|t|^{2d_2}}^{t-c_2^2|t|^{2d_2}}\frac{|t|^{b}}{(t-s)^{a/2}}F\left( \frac{c_1^2|t|^{2d_1}(2+c_{**}^2)^{2(d_2)^{-}}}{4(t-s)},\frac{c_2^2|t|^{2d_2} (2+c_{**}^2)^{2(d_2)^{+}}}{4(t-s)}\right) ds \\ \lesssim&\int _{2t-c_2^2|t|^{2d_2}}^{t-c_2^2|t|^{2d_2}}\frac{|t|^{b}}{(t-s)^{a/2}} {\left\{ \begin{array}{ll} \left( \frac{c_2^2|t|^{2d_2}}{t-s}\right) ^{\frac{n-a}{2}} &{} \text{ if } a<n, \\ \ln \left( \frac{c_2^2|t|^{2d_2} (2+c_{**}^2)^{2(d_2)^{+}}}{c_1^2|t|^{2d_1}(2+c_{**}^2)^{2(d_2)^{-}}}\right) &{} \text{ if } a=n, \\ \left( \frac{c_1^2|t|^{2d_1}}{t-s}\right) ^{\frac{n-a}{2}} &{} \text{ if } a>n, \end{array}\right. } ds \\ \lesssim&{\left\{ \begin{array}{ll} c_2^{2-a}|t|^{b+d_2(2-a)} &{} \text{ if } a<n, \\ c_{2}^{2-n} |t|^{b+d_2(2-n) } \ln \left( \frac{c_2^2|t|^{2d_2} (2+c_{**}^2)^{2(d_2)^{+}}}{c_1^2|t|^{2d_1}(2+c_{**}^2)^{2(d_2)^{-}}}\right) &{} \text{ if } a=n, \\ |t|^b c_{1}^{n-a} |t|^{d_{1}(n-a)} c_{2}^{2-n} |t|^{d_{2}(2-n)} &{} \text{ if } a>n. \end{array}\right. } \end{aligned} \end{aligned}$$
(B.5)

Fourth, when \(s\in (-\infty ,2t-c_2^2|t|^{2d_2}]\), we have \(\frac{-s}{2} \le t-s \le -s\). For \(a<n\),

$$\begin{aligned} \begin{aligned} J_4 =&\int _{-\infty }^{2t-c_2^2|t|^{2d_2}}\frac{|s|^{b}}{(t-s)^{a/2}}F\left( \frac{c_1^2|s|^{2d_1}}{4(t-s)},\frac{c_2^2|s|^{2d_2}}{4(t-s)}\right) ds\\ \lesssim&\int _{-\infty }^{2t-c_2^2|t|^{2d_2}} |s|^{b-\frac{a}{2}} F\left( \frac{c_1^2|s|^{2d_1}}{4|s|},\frac{c_2^2|s|^{2d_2}}{2|s|}\right) ds \\ \lesssim&\int _{-\infty }^{2t-c_2^2|t|^{2d_2}}|s|^{b-\frac{a}{2}} c_2^{n-a} |s|^{(2d_2-1)\frac{n-a}{2}} ds \\ \lesssim&c_2^{n-a}|t|^{b+d_2(n-a)-\frac{n}{2}+1} \lesssim c_2^{2-a}|t|^{b+d_2(2-a)}, \end{aligned} \end{aligned}$$

where (B.2) is needed to guarantee the integrability and the last step is using \(d_2\le 1/2\), \(c_2\le c_{**}\) and \(n>2\). For \(a\ge n\), similarly we have

$$\begin{aligned} \begin{aligned} J_4 \lesssim&{\left\{ \begin{array}{ll} c_{1}^{n-a} |t|^{b+d_{1}(n-a) +1-\frac{n}{2}} &{} \text{ if } a>n, \\ |t|^{b+1-\frac{a}{2}}\ln \left( \frac{2c_2|t|^{d_2}}{c_1|t|^{d_1}} \right) &{} \text{ if } a=n, \end{array}\right. } \\ \lesssim&c_1^{2-a}|t|^{b+d_1(2-a)} . \end{aligned} \end{aligned}$$

Collecting the estimates of \(J_1\) to \(J_4\), we get the conclusion. \(\square \)

Remark A.2

After close examination of the proof, only (B.4) needs the comparison between a and 2. In fact, if \(a<2\), one can let \(c_1=0\) to get

$$\begin{aligned} {\mathcal T} ^{out}\left[ \frac{|t|^{b}}{|x|^a}\mathbf {1}_{\{ |x|\le c_2|t|^{d_2}\}}\right] (0,t)\le C c_2^{2-a}|t|^{b+d_2(2-a)}.\end{aligned}$$

Lemma B.2

Suppose \(n >2\), \(a\ge 0\), \(d_1\le d_2\le \frac{1}{2}\) and b satisfies (B.2), \(0\le c_1,c_2\le c_{**}\). Denote

$$\begin{aligned} u(x,t)=\mathcal {T}^{out}\left[ \frac{|t|^{b}}{|x|^a}\mathbf {1}_{\{ c_1|t|^{d_1}\le |x|\le c_2|t|^{d_2}\}}\right] (x,t). \end{aligned}$$

Then there exists C depending on \(n,a,b,d_1,d_2,c_{**}\) such that for \(t<-1\)

$$\begin{aligned} u(x,t)\le C {\left\{ \begin{array}{ll}c_1^{2-a}|t|^{b+d_1(2-a)}&{}\text {if }a\in (2,\infty ),\\ c_2^{2-a}|t|^{b+d_2(2-a)}&{}\text {if }a\in [0,2).\end{array}\right. } \end{aligned}$$
(B.6)

Moreover, when \(|x|>2c_2|2t|^{d_2}\), \(a<n\),

$$\begin{aligned} u(x,t) \le C c_2^{n-a}{\left\{ \begin{array}{ll} |t|^{b+d_2(n-a)}|x|^{2-n}&{}\text {if }2c_2|2t|^{d_2}\le |x|\le |t|^{\frac{1}{2}},\\ |x|^{2b+2d_2(n-a)+2-n}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$
(B.7)

When \(|x|\ge 2c_1 |2t|^{d_1}\), \(a>n\),

$$\begin{aligned} u(x,t) \le C c_1^{n-a}{\left\{ \begin{array}{ll} |t|^{b+d_{1}(n-a)} |x|^{2-n} &{} \text{ if } 2c_1 |2t|^{d_1} \le |x|\le |t|^{\frac{1}{2}}, \\ |x|^{2b+2d_1(n-a)} |x|^{2-n} &{} \text{ if } |x|\ge |t|^{\frac{1}{2}} . \end{array}\right. } \end{aligned}$$
(B.8)

Proof

\(\bullet \) Since

$$\begin{aligned}\frac{|t|^{b}}{|x|^a} \mathbf {1}_{\{ c_1|t|^{d_1}\le |x|\le c_2|t|^{d_2}\}}\le |t|^b\min \left\{ \frac{1}{c_1^a|t|^{d_1a}},\frac{1}{|x|^a}\right\} \mathbf {1}_{\{|x|\le c_2|t|^{d_2}\}}=f(x,t) , \end{aligned}$$

then

$$\begin{aligned} u(x,t)\lesssim \int _{-\infty }^t\int _{\mathbb {R}^n}G(x-y,t-s)f(y,s)dyds . \end{aligned}$$

Since G and f are both decreasing functions for each time slice, using Hardy-Littlewood rearrangement inequality, then

$$\begin{aligned}u(x,t)\le u(0,t)=J_1+J_2,\end{aligned}$$

where

$$\begin{aligned} J_1=&\int _{-\infty }^t\int _{\mathbb {R}^n}G(y,t-s)|s|^b\min \left\{ \frac{1}{c_1^a|s|^{d_1a}},\frac{1}{|y|^a}\right\} \mathbf {1}_{\{|y|\le c_1|s|^{d_1}\}}dyds, \end{aligned}$$
(B.9)
$$\begin{aligned} J_2=&\int _{-\infty }^t\int _{\mathbb {R}^n}G(y,t-s)|s|^b\min \left\{ \frac{1}{c_1^a|s|^{d_1a}},\frac{1}{|y|^a}\right\} \mathbf {1}_{\{c_1|s|^{d_1}\le |y|\le c_2|s|^{d_2}\}}dyds. \end{aligned}$$
(B.10)

Applying Lemma B.1 and Remark A.2, we obtain

$$\begin{aligned} J_1\lesssim c_1^{2-a}|t|^{b+d_1(2-a)},\quad J_2\lesssim {\left\{ \begin{array}{ll}c_1^{2-a}|t|^{b+d_1(2-a)}&{}\text {if }a\in (2,\infty ),\\ c_2^{2-a}|t|^{b+d_2(2-a)}&{}\text {if }a\in (0,2).\end{array}\right. } \end{aligned}$$

Therefore (B.6) is established.

\(\bullet \) Next we will establish (B.7) when \(d_2\le 0\). In this case, for \(x>2c_2|t|^{d_2}\), one has

$$\begin{aligned} \frac{1}{2}|x|\le |x-y|\le 2|x| \text { for } y \text { with } |y|\le |s|^{d_2} \text { and }s\le t. \end{aligned}$$
(B.11)

Then

$$\begin{aligned} u(x,t)\lesssim&\int _{-\infty }^t\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{c_1|s|^{d_1}\le |y|\le c_2|s|^{d_2}\}}dyds\\ \approx&\int ^t_{-\infty }\int _{c_1|s|^{d_1}}^{c_2|s|^{d_2}}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}|s|^{b}r^{n-1-a}drds\\ \lesssim&c_2^{n-a}\int ^t_{-\infty }\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}|s|^{b+d_2(n-a)}ds\\ \le&c_2^{n-a}\left( \max \{|t|,|x|^2\}\right) ^{b+d_2(n-a)}|x|^{2-n}. \end{aligned}$$

The last step follows from the following two facts

$$\begin{aligned}&\int _{2t}^t\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}|s|^{b+d_2(n-a)}ds \approx |t|^{b+d_2(n-a)}\int _{2t}^t\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}ds\\&\quad \approx |t|^{b+d_2(n-a)}|x|^{2-n}\int _{\frac{|x|^2}{16|t|}}^\infty e^{-z}z^{\frac{n}{2}-2}dz \lesssim {\left\{ \begin{array}{ll} |t|^{b+d_2(n-a)}|x|^{2-n}&{}\text {if }|x|<|t|^{\frac{1}{2}},\\ |t|^{b+d_2(n-a)}\int _{\frac{|x|^2}{16|t|}}^\infty e^{-z}z^{\frac{n}{2}-2}dz&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned}&\int _{-\infty }^{2t}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}|s|^{b+d_2(n-a)}ds\approx \int _{-\infty }^{2t}e^{-\frac{|x|^2}{16|s|}}|s|^{b+d_2(n-a)-\frac{n}{2}}ds\\&\quad \approx |x|^{2b+2d_2(n-a)-n+2}\int _{0}^{\frac{|x|^2}{32|t|}}e^{-z}z^{-b-d_2(n-a)+\frac{n}{2}-2}dz \approx {\left\{ \begin{array}{ll} |t|^{b+d_2(n-a)-\frac{n}{2}+1}&{}\text {if }|x|<|t|^{\frac{1}{2}},\\ |x|^{2b+2d_2(n-a)-n+2}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}, \end{array}\right. } \end{aligned}$$

where \(-b-d_2(n-a)+\frac{n}{2}-2>-1\) is needed to guarantee the integrability. Thus (B.7) is established.

\(\bullet \) Next we will establish (B.7) when \(d_2>0\). We do not have (B.11) anymore. In this case, \(|x|\ge 2c_2|2t|^{d_2}\) is equivalent to \(-(\frac{|x|}{2c_2})^{1/d_2}\le 2t\). We write

$$\begin{aligned}(-\infty ,t)=(-(\frac{|x|}{2c_2})^{1/d_2},t)\cup (-(\frac{2|x|}{c_2})^{1/d_2},-(\frac{|x|}{2c_2})^{1/d_2})\cup (-\infty ,-(\frac{2|x|}{c_2})^{1/d_2})\end{aligned}$$

and thus

$$\begin{aligned} u\lesssim \int _{-\infty }^t\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds=u_1+u_2+u_3 \end{aligned}$$
(B.12)

where \(u_1,u_2,u_3\) are the integrations according to the three intervals respectively. We shall verify that \(u_1,u_2,u_3\) all satisfy (B.7). For \(u_1\), one has \(c_2|s|^{d_2}\le |x|/2\) for such s. Then

$$\begin{aligned} u_1=&\int ^t_{-(|x|/2c_2)^{1/d_2}}\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&\int ^t_{-(|x|/2c_2)^{1/d_2}}\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&\left( \int _{2t}^t+\int ^{2t}_{-(|x|/2c_2)^{1/d_2}}\right) \int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&c_2^{n-a} \left( \max \{|t|,|x|^2\}\right) ^{b+d_2(n-a)}|x|^{2-n}. \end{aligned}$$

The last step follows from some easy integration which has been done many times in this section. For \(u_2\),

$$\begin{aligned} u_2\lesssim&\int _{-(2|x|/c_2)^{1/d_2}}^{-(|x|/2c_2)^{1/d_2}}\int _{\mathbb {R}^n} \frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&(|x|/c_2)^{b/d_2}\int _{-(2|x|/c_2)^{1/d_2}}^{-(|x|/2c_2)^{1/d_2}}\int _{\mathbb {R}^n} \frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{1}{|y|^a}\mathbf {1}_{\{|y|\le 2|x|\}}dyds\\ \lesssim&c_2^{-b/d_2}|x|^{b/d_2+n-a}\int _{-(2|x|/c_2)^{1/d_2}}^{-(|x|/2c_2)^{1/d_2}} \frac{1}{(t-s)^{n/2}}ds\lesssim c_2^{(-b+\frac{n}{2}-1)/d_2}(|x|^{1/d_2})^{b+d_2(n-a)+1-\frac{n}{2}}\\ \lesssim&c_2^{n-a}{\left\{ \begin{array}{ll} |t|^{b+d_2(n-a)}|x|^{2-n}&{}\text {if }2c_2|2t|^{d_2}\le |x|<|t|^{\frac{1}{2}},\\ |x|^{2b+2d_2(n-a)+2-n}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$

The last step follows from \(0<d_2\le \frac{1}{2}\) and \(b+d_2(n-a)+1-\frac{n}{2}<0\). Similarly, for \(u_3\),

$$\begin{aligned} u_3\lesssim&\int ^{-(2|x|/c_2)^{1/d_2}}_{-\infty }\int _{\mathbb {R}^n} \frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&(|x|/c_2)^{(b+1-\frac{n}{2})/d_2}|x|^{n-a}+\int ^{-(2|x|)^{1/d_2}}_{-\infty }\frac{1}{|s|^{\frac{n}{2}}}e^{-\frac{|y|^2}{16(t-s)}}\frac{|s|^a}{|y|^b}\mathbf {1}_{\{2|x|\le |y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&c_2^{(-b+\frac{n}{2}-1)/d_2}(|x|^{1/d_2})^{b+d_2(n-a)+1-\frac{n}{2}}\\ \lesssim&c_2^{n-a}{\left\{ \begin{array}{ll} |t|^{b+d_2(n-a)}|x|^{2-n}&{}\text {if }2c_2|2t|^{d_2}\le |x|<|t|^{\frac{1}{2}},\\ |x|^{2b+2d_2(n-a)+2-n}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$

Collecting the results of \(u_1,u_2,u_3\), we can get (B.7).

\(\bullet \) By the similar calculation like (B.7), we will get (B.8). \(\square \)

Lemma B.3

Suppose \(2<a<n\), \(0\le d_2\le \frac{1}{2}\), \(\frac{n}{2} -b>1\) and \(0<c_2\le c_{**}\). Then there exists C depending on \(n,a,b,d_2,c_{**}\) such that for \(t<-1\),

$$\begin{aligned} \mathcal {T}^{out}\left[ \frac{|t|^{b}}{|x|^a}\mathbf {1}_{\{|x|\le c_2|t|^{d_2}\}}\right] \le C |t|^{b}|x|^{2-a} \quad \text {for }|x|<c_2|t|^{d_2}. \end{aligned}$$
(B.13)

Proof

We divide u into three parts

$$\begin{aligned} u(x,t)= \int _{-\infty }^t\int _{\mathbb {R}^n}G(x-y,t-s)\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le c_2|s|^{d_2}\}}dyds=u_1+u_2+u_3, \end{aligned}$$

where \(u_1\) is the term with \(\mathbf {1}_{\{|y|\le \frac{1}{2}|x|\}}\) inside the integrand, \(u_2\) is the one with \(\mathbf {1}_{\{\frac{1}{2}|x|\le |y|\le 2|x|\}}\) and \(u_3\) is the one with \(\{ 2|x|\le |y|\le c_2|s|^{d_2}\}\). Since most of the calculation are similar to the proof of the previous lemma. We omit some details here. For \(u_1\), we proceed as

$$\begin{aligned} u_1\lesssim&\int _{-\infty }^t\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{|y|\le \frac{1}{2}|x|\}}dyds\\ \approx&\,|x|^{n-a}\int _{-\infty }^t\frac{1}{(t-s)^{n/2}}e^{-\frac{|x|^2}{16(t-s)}}|s|^{b}ds\\ \lesssim&\, |t|^{b}|x|^{2-a}\int _{\frac{|x|^2}{16(-t)}}^\infty e^{-z}z^{\frac{n}{2}-2}dz+|x|^{2b+2-a}\int _0^{\frac{|x|^2}{32(-t)}}e^{-z}z^{-b+\frac{n}{2}-2}dz\\ \lesssim&|t|^{b}|x|^{2-a}+|x|^{n-a}|t|^{1-\frac{n}{2}+b}, \end{aligned}$$

where we have used the fact that \(\frac{n}{2} -b>1\). For \(u_2\), we have

$$\begin{aligned} u_2\lesssim&\int _{-\infty }^t\int _{\mathbb {R}^n} \frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{\frac{1}{2}|x|\le |y|\le 2|x|\}}dyds\\ \lesssim&|x|^{-a}\int _{-\infty }^t\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}|s|^{b}\mathbf {1}_{\{|x-y|\le 3|x|\}}dydx\\ \approx&|x|^{-a}\int _{-\infty }^t\int _0^{3|x|}\frac{1}{(t-s)^{n/2}}e^{-\frac{r^2}{4(t-s)}}|s|^{b}r^{n-1}dyds \approx |x|^{-a}\int _{-\infty }^t\int _0^{\frac{9|x|^2}{4(t-s)}}|s|^{b}e^{-z}z^{\frac{n}{2}-1} d z d s\\ \approx&|x|^{-a}\int _{-\infty }^t|s|^{b}\min \left\{ 1,\left( \frac{|x|^2}{t-s}\right) ^{\frac{n}{2}}\right\} d s \approx |t|^{b}|x|^{2-a}+|t|^{1+b-\frac{n}{2}}|x|^{n-a}. \end{aligned}$$

For \(u_3\), we have

$$\begin{aligned} u_3\lesssim&\int _{-\infty }^t\int _{\mathbb {R}^n} \frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{2|x|\le |y|\le c_2|s|^{d_2}\}}dyds\\ \lesssim&\int _{-\infty }^t\int _{\mathbb {R}^n} \frac{1}{(t-s)^{n/2}}e^{-\frac{|y|^2}{16(t-s)}}\frac{|s|^{b}}{|y|^a}\mathbf {1}_{\{2|x|\le |y|\le c_2 |s|^{d_2}\}}dyds\\ \approx&\int _{-\infty }^t\int _{2|x|}^{c_2|s|^{d_2}}\frac{1}{(t-s)^{n/2}}e^{-\frac{r^2}{16(t-s)}}|s|^{b}r^{n-1-a}drds\\ \approx&\int _{-\infty }^t\int ^{\frac{c_2|s|^{d_2}}{16(t-s)}}_{\frac{|x|^2}{4(t-s)}}(t-s)^{-\frac{a}{2}}|s|^{b}e^{-z}z^{\frac{n-a}{2}-1}dzds\lesssim |t|^{b} |x|^{2-a} . \end{aligned}$$

Combining the estimate of \(u_1,u_2,u_3\) and using the fact that \(|x|^{n-a}|t|^{1-\frac{n}{2}+b}\le |t|^{b}|x|^{2-a}\) because \(|x|\le c_2|t|^{d_2}\), we get (B.13). \(\square \)

Corollary B.4

Suppose that \(n>2\), \(d_1\le d_2\le \frac{1}{2}\), b satisfies (B.2), \(0\le c_1,c_2\le c_{**}\). Denote

$$\begin{aligned} u(x,t) = \mathcal {T}^{out}\left[ |t|^{b} |x|^{-a}\mathbf {1}_{\{ c_1|t|^{d_1}\le |x|\le c_2|t|^{d_2}\}}\right] . \end{aligned}$$

Then there exists C depending on \(n,a,b,d_1,d_2,c_{**}\) such that for \(t<-1\), if \(0\le a <2\),

$$\begin{aligned} u(x,t) \le C {\left\{ \begin{array}{ll} c_2^{2-a}|t|^{b+d_2(2-a)} &{}\text {if }|x|\le c_2|t|^{d_2}, \\ c_2^{n-a}|t|^{b+d_2(n-a)}|x|^{2-n}&{}\text {if }c_2|t|^{d_2}\le |x|\le |t|^{\frac{1}{2}}, \\ c_2^{n-a} |x|^{2b+2d_2(n-a)+2-n}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$
(B.14)

If \(2<a<n\),

$$\begin{aligned} u(x,t) \le C {\left\{ \begin{array}{ll} c_1^{2-a}|t|^{b+d_1(2-a)}&{}\text {if }|x|\le c_1|t|^{d_1}, \\ |t|^{b}|x|^{2-a}&{}\text {if }c_1|t|^{d_1}\le |x|\le c_2|t|^{d_2}, \\ c_2^{n-a}|t|^{b+d_2(n-a)}|x|^{2-n}&{}\text {if }c_2|t|^{d_2}\le |x|\le |t|^{\frac{1}{2}}, \\ c_2^{n-a} |x|^{2b+2d_2(n-a)+2-n}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$
(B.15)

If \(a>n\),

$$\begin{aligned} u(x,t) \le C {\left\{ \begin{array}{ll} c_1^{2-a}|t|^{b+d_1(2-a)}&{}\text {if }|x|\le c_1|t|^{d_1}, \\ c_1^{n-a}|t|^{b+d_1(n-a)}|x|^{2-n} &{}\text {if }c_1|t|^{d_1}\le |x|\le |t|^{\frac{1}{2}}, \\ c_1^{n-a} |x|^{2b+2d_1(n-a)+2-n}&{}\text {if }|x|\ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$
(B.16)

Proof

(B.14) and (B.16) follow Lemma B.2 directly. (B.15) follows from (B.7) and (B.13). \(\square \)

Lemma B.5

Suppose that \(\frac{a}{2} -b >1\). Then

$$\begin{aligned} \begin{aligned}&{\mathcal T} ^{out} \left[ |t|^{b} |x|^{-a} \mathbf {1}_{\{|x|\ge |t|^{\frac{1}{2}}\}} \right] \\ \lesssim&\, |t|^{1+b-\frac{a}{2}} \mathbf {1}_{\{|x|\le |t|^{\frac{1}{2}}\} } + \mathbf {1}_{\{|x|\ge |t|^{\frac{1}{2}}\}} |x|^{-a} {\left\{ \begin{array}{ll} |t|^{1+b}, &{} \text{ if } b<-1, \\ 1+ \ln \left( \frac{|x|^2}{|t|} \right) &{} \text{ if } b= - 1, \\ |x|^{2+2b} &{} \text{ if } b> - 1 . \end{array}\right. } \end{aligned} \end{aligned}$$
(B.17)

Proof

Denote \(u(x,t) = {\mathcal T} ^{out} \left[ |t|^{b} |x|^{-a} \mathbf {1}_{[|x|\ge |t|^{\frac{1}{2}}]} \right] \).

\(\bullet \) For \(|x|\le \frac{1}{2} |t|^{\frac{1}{2}}\), we have \(|x-y|\ge \frac{1}{2}|y|\) for \(|y|\ge |s|^{\frac{1}{2}}\ge |t|^{\frac{1}{2}}\). Then

$$\begin{aligned} \begin{aligned} u(x,t) \lesssim&\, \int _{-\infty }^t \int _{{{\mathbb R}}^n} \frac{1}{ (t-s)^{n/2}} e^{-\frac{|y|^2}{16(t-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{\{|y|\ge |s|^{\frac{1}{2}}\}} \,\mathrm {d}\xi \,\mathrm {d}s \\ \lesssim&\, \left( \int _{-\infty }^{2t} + \int _{2t}^t \right) |s|^{b} (t-s)^{-a/2} e^{-\frac{(-s)}{32(t-s)}} \,\mathrm {d}s \lesssim \ |t|^{1+b-\frac{a}{2}} , \end{aligned} \end{aligned}$$
(B.18)

where \(\frac{a}{2} -b >1\) is used to guarantee the integrability in the last step.

\(\bullet \) Consider \(|x|\ge 4|t|^{\frac{1}{2}}\). We make the following decomposition.

$$\begin{aligned} u(x,t) =&\, \left( \int _{-\frac{1}{4}|x|^2}^t+\int _{-4|x|^2}^{-\frac{1}{4}|x|^2}+\int ^{-4|x|^2}_{-\infty }\right) \int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}|s|^{b}|y|^{-a}\mathbf {1}_{\{|y|\ge |s|^{\frac{1}{2}}\}}\,\mathrm {d}y\,\mathrm {d}s \\ :=&\, P_1 + P_2 +P_3 . \end{aligned}$$

For \(P_1\), we divide it further to be

$$\begin{aligned} P_1=\int _{-\frac{1}{4}|x|^2}^t\int _{\mathbb {R}^n}\frac{1}{(t-s)^{n/2}}e^{-\frac{|x-y|^2}{4(t-s)}}|s|^{b}|y|^{-a}\mathbf {1}_{\{|y|\ge |s|^{\frac{1}{2}}\}}dyds=P_{11}+P_{12}+P_{13} \end{aligned}$$

where \(P_{11}\) is the term with \(\mathbf {1}_{\{|s|^{\frac{1}{2}}\le |y|\le \frac{1}{2}|x|\}}\) in the integrand, \(P_{12}\) is the one with \(\mathbf {1}_{\{\frac{1}{2}|x|\le |y|\le 2|x|\}}\) and \(P_{13}\) is the one with \(\mathbf {1}_{\{2|x|\le |y|\}}\). For \(P_{11}\), when \(a<n\),

$$\begin{aligned} \begin{aligned} P_{11} \lesssim&\, \int _{ -\frac{1}{4}|x|^2 }^t \int _{{{\mathbb R}}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{\{ |s|^{\frac{1}{2}} \le |y|\le \frac{|x|}{2}\}} \,\mathrm {d}y \,\mathrm {d}s \\ \lesssim&\, \int _{ -\frac{1}{4}|x|^2 }^t \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^{b} |x|^{n-a} \,\mathrm {d}s \\ =&\, |x|^{n-a} \int _{ -\frac{1}{4}|x|^2 }^{t} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x|^2}{16(t-s)}} |s|^{b} \,\mathrm {d}s \lesssim \ |x|^{2-a+2b} . \end{aligned} \end{aligned}$$
(B.19)

When \(a\ge n\), by similar calculation, \( P_{11} \lesssim |x|^{2-a+2b} \) still holds.

For \(P_{12}\),

$$\begin{aligned} \begin{aligned} P_{12} \lesssim&\, |x|^{-a} \int _{ -\frac{1}{4}|x|^2 }^t \int _{{{\mathbb R}}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x-y|^2}{4(t-s)}} |s|^{b} \mathbf {1}_{\{ \frac{|x|}{2} \le |y| \le 2|x|\}} \,\mathrm {d}y \,\mathrm {d}s \\ \lesssim&\, |x|^{-a} \left( \int _{2t }^t + \int _{ -\frac{1}{4}|x|^2 }^{2t} \right) \int _{0}^{3|x|} \frac{1}{(t-s)^{n/2}} e^{-\frac{r^2}{4(t-s)}} |s|^{b} r^{n-1} \,\mathrm {d}r \,\mathrm {d}s \\ \lesssim&\, |x|^{-a} |t|^{1+b} + |x|^{-a} {\left\{ \begin{array}{ll} |t|^{1+b} &{} \text{ if } b< - 1, \\ 1+ \ln \left( \frac{|x|^2}{-t} \right) &{} \text{ if } b=-1, \\ (|x|^2)^{1+b} &{} \text{ if } b>- 1 . \end{array}\right. } \end{aligned} \end{aligned}$$
(B.20)

For \(P_{13}\),

$$\begin{aligned} \begin{aligned} P_{13} \lesssim&\, \int _{ -\frac{1}{4}|x|^2 }^t \int _{{{\mathbb R}}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|y|^2}{ 16(t-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{\{ 2|x| \le |y|\}} \,\mathrm {d}y \,\mathrm {d}s \\ \approx&\, \int _{ -\frac{1}{4}|x|^2 }^t \int _{2|x|}^\infty \frac{(-s)^{b}}{(t-s)^{n/2}} e^{-\frac{ r^2}{ 16(t-s)}} r^{n-1-a} \,\mathrm {d}r \,\mathrm {d}s \\ =&\, \left( \int _{2t }^{t} + \int _{ -\frac{1}{4}|x|^2 }^{2t} \right) \int _{2|x|}^\infty \frac{(-s)^{b}}{(t-s)^{n/2}} e^{-\frac{ r^2}{ 16(t-s)}} r^{n-1-a} \,\mathrm {d}r \,\mathrm {d}s \\ \lesssim&\, (-t)^{b} |x|^{2-a} e^{-\frac{|x|^2}{16(-t)}} + |x|^{2+2b- a} . \end{aligned} \end{aligned}$$
(B.21)

For \(P_2\), since \(-\frac{1}{4}|x|^2\le 4t\) in this case,

$$\begin{aligned} \begin{aligned} P_2 \lesssim&\, \int _{-4|x|^2}^{ -\frac{1}{4}|x|^2 } \int _{{{\mathbb R}}^n} \frac{1}{ |s|^{n/2}} e^{-\frac{|x-y|^2}{4(-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{\{|y|\ge \frac{ |x|}{2} \}} \,\mathrm {d}y \,\mathrm {d}s \\ \approx&\, |x|^{-n+2b} \int _{-4|x|^2}^{ -\frac{1}{4}|x|^2 } \int _{{{\mathbb R}}^n} e^{-\frac{|x-y|^2}{4(-s)}} |y|^{-a} \left( \mathbf {1}_{\{\frac{ |x|}{2} \le |y|\le 2|x|\}} + \mathbf {1}_{\{2|x|\le |y| \}} \right) \,\mathrm {d}y \,\mathrm {d}s \\ \lesssim&\, |x|^{2+2b-a} . \end{aligned} \end{aligned}$$
(B.22)

For \(P_3\), in this case, \(|x|\le \frac{1}{2} |s|^{\frac{1}{2}}\),

$$\begin{aligned} \begin{aligned} P_3 \lesssim&\, \int _{-\infty }^{-4|x|^2} \int _{{{\mathbb R}}^n} \frac{1}{(t-s )^{n/2}} e^{-\frac{|y|^2}{ 16(t-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{\{|y|\ge |s|^{\frac{1}{2}}\}} \,\mathrm {d}y \,\mathrm {d}s \\ \lesssim&\, \int _{-\infty }^{-4|x|^2} \int _{{{\mathbb R}}^n} (-s)^{b-\frac{n}{2}} e^{-\frac{|y|^2}{ 16(-s)}} |y|^{-a} \mathbf {1}_{\{|y|\ge |s|^{\frac{1}{2}}\}} \,\mathrm {d}y \,\mathrm {d}s \lesssim \ |x|^{2+2b-a} , \end{aligned} \end{aligned}$$
(B.23)

where \(\frac{a}{2} -b>1\) is required to guarantee the integrability. Combining the above estimates of \(P_1\), \(P_2\) and \(P_3\), we get, when \(|x|\ge 4|t|^{\frac{1}{2}}\)

$$\begin{aligned} u(x,t) \lesssim |x|^{-a} {\left\{ \begin{array}{ll} |t|^{1+b} &{} \text{ if } b<-1, \\ 1+ \ln \left( \frac{|x|^2}{-t} \right) &{} \text{ if } b=-1, \\ |x|^{2+2b} &{} \text{ if } b>-1 . \end{array}\right. } \end{aligned}$$
(B.24)

\(\bullet \) Consider the case \( \frac{1}{2} |t|^{\frac{1}{2}} \le |x|\le 4|t|^{\frac{1}{2}}\),

$$\begin{aligned} \begin{aligned} u(x,t) =&\, \int _{-\infty }^t \int _{{{\mathbb R}}^n} \frac{1}{(4\pi (t-s))^{n/2}} e^{-\frac{|x-y|^2}{4(t-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{[|y|\ge |s|^{\frac{1}{2}}]} \,\mathrm {d}y \,\mathrm {d}s \\ \lesssim&\, \left( \int _{64t}^t + \int _{-\infty }^{64t} \right) \int _{{{\mathbb R}}^n} \frac{1}{(t-s)^{n/2}} e^{-\frac{|x-y|^2}{4(t-s)}} |s|^{b} |y|^{-a} \mathbf {1}_{\{|y|\ge |s|^{\frac{1}{2}}\}} \,\mathrm {d}y \,\mathrm {d}s \\ \lesssim&\, |t|^{1+b -\frac{a}{2}} . \end{aligned} \end{aligned}$$
(B.25)

\(\square \)

In order to get the gradient estimate of \(\bar{\varphi }\), we need the following lemma.

Lemma B.6

For \(d_{1}\le d_{2} \le \frac{1}{2}\), \(\frac{n}{2} -b-d_2 n>0\), \(c_1, c_2 \approx 1\), we have

$$\begin{aligned} {\mathcal T} ^{d}[|t|^{b} \mathbf {1}_{[c_1 |t|^{d_1} \le |x| \le c_2 |t|^{d_2}]}] \lesssim {\left\{ \begin{array}{ll} |t|^{b+d_2} &{} \text{ if } |x| \le |t|^{d_2}, \\ |t|^{b+d_2 n} |x|^{1-n} &{} \text{ if } |t|^{d_2} \le |x| \le |t|^{\frac{1}{2}}, \\ (|x|^2)^{b+d_2n} |x|^{1-n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2}}. \end{array}\right. } \end{aligned}$$
(B.26)

For \(d_{1}\le d_{2} \le \frac{1}{2}\), \(a>n\), \(\frac{n}{2} -b -d_1(n-a)>0\), \(c_1, c_2 \approx 1\), we have

$$\begin{aligned} {\mathcal T} ^{d}[\frac{|t|^{b}}{|x|^a} \mathbf {1}_{[c_1 |t|^{d_1} \le |x| \le c_2 |t|^{d_2}]}] \lesssim {\left\{ \begin{array}{ll} |t|^{b+d_1(1-a)} &{} \text{ if } |x| \le |t|^{d_1} , \\ |t|^{b+d_1(n-a)} |x|^{1-n} &{} \text{ if } |t|^{d_1} \le |x| \le |t|^{\frac{1}{2}}, \\ (|x|^2)^{b+d_1(n-a)} |x|^{1-n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2}} . \end{array}\right. } \end{aligned}$$
(B.27)

We omit the proof since it relies splitting integral domain like above.

1.2 Proofs of three lemmas in the outer problem

Proof of Lemma 4.4

For \(j=2,\dots ,k\), by Corollary B.4,

$$\begin{aligned}&{\mathcal T} ^{out}[\mu _{0j}^{-2}(t)|t|^{\gamma _j} \mathbf {1}_{\{ |x|\le \mu _{0j} \}}] \lesssim {\left\{ \begin{array}{ll} |t|^{\gamma _{j}} &{} \text{ if } |x|\le \mu _{0j}, \\ |t|^{\gamma _{j}} \mu _{0j}^{n-2} |x|^{2-n} &{} \text{ if } \mu _{0j} \le |x|\le |t|^{\frac{1}{2}}, \\ |x|^{2\gamma _{j} +(4-2n)\alpha _j +2-n} &{} \text{ if } |x|\ge |t|^{\frac{1}{2}}, \end{array}\right. }\\&{\mathcal T} ^{out} [\mu _{0j}^{\alpha }(t)|t|^{\gamma _j} |x|^{-2-\alpha } \mathbf {1}_{ \{\mu _{0j} \le |x|\le \bar{\mu }_{0j} \} }] \lesssim {\left\{ \begin{array}{ll} |t|^{\gamma _{j}} &{} \text{ if } |x|\le \mu _{0j}, \\ |t|^{\gamma _{j}} \mu _{0j}^{\alpha } |x|^{-\alpha } &{} \text{ if } \mu _{0j} \le |x|\le \bar{\mu }_{0j} , \\ |t|^{\gamma _{j}} \mu _{0j}^{\alpha } \bar{\mu }_{0j}^{n-2-\alpha } |x|^{2-n} &{} \text{ if } \bar{\mu }_{0j} \le |x| \le |t|^{\frac{1}{2}} , \\ |x|^{2\gamma _j^*+2-n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2}} . \end{array}\right. } \end{aligned}$$

Thus \({\mathcal T} ^{out}[w_{1j}] \lesssim w_{1j}^{*}\).

For \(j=1\), the first part of \(w_{11}\) can be dealt with by the same method above. For the rest part, by Corollary B.4,

$$\begin{aligned} \begin{aligned} {\mathcal T} ^{out}[|t|^{\gamma _{1}} \bar{\mu }_{01}^{n-2-\alpha } |x|^{-1-n} \mathbf {1}_{\{ \bar{\mu }_{01} \le |x| \le |t|^{\frac{1}{2}} \}}] \lesssim&\, {\left\{ \begin{array}{ll} |t|^{\gamma _{1} } \bar{\mu }_{01}^{-1-\alpha } &{} \text{ if } |x|\le \bar{\mu }_{01} , \\ |t|^{\gamma _1} \bar{\mu }_{01}^{n-3-\alpha } |x|^{2-n} &{} \text{ if } \bar{\mu }_{01} \le |x|\le |t|^{\frac{1}{2}} , \\ |x|^{2(\gamma _1 +\delta (n-3-\alpha )) +2-n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2}} . \end{array}\right. } \\ \lesssim&\, w_{11}^{*} . \end{aligned} \end{aligned}$$

\(\square \)

Proof of Lemma 4.5

This just follows from (B.15). \(b=-2\sigma -(\frac{n}{2}-2)\alpha _{j+1}+\alpha _j\), \(d_2=-\frac{1}{2}(\alpha _j+\alpha _{j-1})\), \(a=n-2\). \(\square \)

Proof of Lemma 4.6

By Corollary B.4, we have

$$\begin{aligned} {\mathcal T} ^{out}[|t|^{-1-\sigma } |x|^{2-n} \mathbf {1}_{\{ \bar{\mu }_{01} \le |x| \le |t|^{\frac{1}{2}}\}}] \lesssim {\left\{ \begin{array}{ll} |t|^{-1-\sigma } \bar{\mu }_{01}^{4-n} &{} \text{ if } |x|\le \bar{\mu }_{01}, \\ |t|^{-1-\sigma } |x|^{4-n} &{} \text{ if } \bar{\mu }_{01} \le |x|\le |t|^{\frac{1}{2}}, \\ |x|^{2-2\sigma -n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2} }. \end{array}\right. } \end{aligned}$$

By Lemma B.5, we have

$$\begin{aligned} {\mathcal T} ^{out}[|t|^{-1-\sigma } |x|^{2-n} \mathbf {1}_{\{ |x| \ge |t|^{\frac{1}{2}}\}}] \lesssim {\left\{ \begin{array}{ll} |t|^{1-\sigma -\frac{n}{2}} &{} \text{ if } |x|\le |t|^{\frac{1}{2}}, \\ |t|^{-\sigma }|x|^{2-n} &{} \text{ if } |x| \ge |t|^{\frac{1}{2} }. \end{array}\right. } \end{aligned}$$

Then (4.27) follows when \(\delta \le \frac{1}{2}\). \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wei, Jc. & Zhang, Q. Bubble towers in the ancient solution of energy-critical heat equation. Calc. Var. 61, 200 (2022). https://doi.org/10.1007/s00526-022-02296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02296-3

Mathematics Subject Classification

Navigation