Skip to main content
Log in

Qualitative analysis of single peaked solutions for the supercritical Hénon problem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the supercritical Hénon problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u= C(\alpha )|x|^{\alpha }u^{p_{\alpha }-\varepsilon } &{}{\text {in}~\Omega },\\ u>0 &{}{\text {in}~\Omega },\\ u=0 &{}{\text {on}~\partial \Omega }, \end{array}\right. } \end{aligned}$$

where \(p_{\alpha }=\frac{N+2+2\alpha }{N-2}\), \(\alpha >0\), \(\Omega \subset {\mathbb {R}}^{N}\) is a smooth bounded domain containing the origin, \(C(\alpha )=(N+\alpha )(N-2)\) and \(N\ge 3\). The existence single peaked solutions has been established by Gladiali and Grossi in [J. Differential Equation 253, 2616–2645 (2012)]. In this paper, we investigate qualitative property of the single peaked solutions for small \(|\varepsilon |\). More precisely, we obtain the non-degeneracy and uniqueness of the single peaked solutions for \(\varepsilon >0\) small enough. Moreover, if \(\varepsilon <0\) small, we show that above problem has no single peaked solutions. It is known that when \(\alpha =0\), the non-degeneracy and uniqueness of the single peaked solutions will depend on the Robin function. However, if \(\alpha >0\), the role of Robin function will disappear because of the presence of the weighted term \(|x|^{\alpha }\). Also our results indicate that the Hénon critical exponent \(p_{\alpha }=\frac{N+2+2\alpha }{N-2}\) plays an essential role in the Hénon equation as the critical exponent \(\frac{N+2}{N-2}\) in the case \(\alpha =0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Ayed, M., El Mehdi, K., Rey, O., Grossi, M.: A nonexistence result of single peaked solutions to a supercritical nonlinear problem. Commun. Contemp. Math. 5(2), 179–195 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bahri, A., Li, Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. Var. Partial Differential Equations 3, 67–93 (1995)

    Article  MathSciNet  Google Scholar 

  3. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states, I. Ann. Inst. H. Poincar. Anal. Non Linaire 23, 803–828 (2006)

    Article  Google Scholar 

  4. Byeon, J., Wang, Z.-Q.: On the Hénon equation: asymptotic profile of ground states. II. J. Differential Equations 216, 78–108 (2005)

    Article  MathSciNet  Google Scholar 

  5. Cao, D., Liu, Z., Peng, S.: Sign-changing bubble tower solutions for the supercritical Hénon equations. Annali di Matematica 197, 1227–1246 (2018)

    Article  MathSciNet  Google Scholar 

  6. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278, 1–17 (2003)

    Article  MathSciNet  Google Scholar 

  7. Cao, D., Peng, S., Yan, S.: Asymptotic behaviour of ground state solutions for the Hénon equation. IMA J. Appl. Math. 74, 468–480 (2009)

    Article  MathSciNet  Google Scholar 

  8. Grossi, M.: A nondegeneracy result for a nonlinear elliptic equation. NoDEA Nonlinear Differential Equations Appl. 12, 227–241 (2005)

    Article  MathSciNet  Google Scholar 

  9. Gladiali, F., Grossi, M.: Supercritical elliptic problem with nonautonomous nonlinearities. J. Differential Equation 253, 2616–2645 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gladiali, F., Grossi, M., Neves, S.L.N.: Nonradial solutions for the Hénon equation in \({\mathbb{R} }^{N}\). Adv. Math. 249, 1–36 (2013)

    Article  MathSciNet  Google Scholar 

  11. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 24, 525–598 (1981)

    Article  MathSciNet  Google Scholar 

  12. Hénon, M.: Numerical experiments on the stability of spherical stellar systems. Astronom. Astrophys. 24, 229–238 (1973)

    Google Scholar 

  13. He, Y., Li, B., Long, W., Xia, A.: Hénon equation involving nearly critical Sobolev exponent in a general domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(22), 925–955 (2021)

    MATH  Google Scholar 

  14. Hirano, N.: Existence of positive solutions for the Hénon equation involving critical Sobolev terms. J. Differential Equations 247, 1311–1333 (2009)

    Article  MathSciNet  Google Scholar 

  15. Liu, Z., Peng, S.: Infinitely many double-boundary-peak solutions for a Hénon-like equation with critical nonlinearity. J. Differential Equations 260, 370–400 (2016)

    Article  MathSciNet  Google Scholar 

  16. Liu, Z., Peng, S.: Solutions with large number of peaks for the supercritical Hénon equation. Pacific J. Math. 280, 115–139 (2016)

    Article  MathSciNet  Google Scholar 

  17. Ni, W.-M.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31, 801–807 (1982)

    Article  MathSciNet  Google Scholar 

  18. Peng, S.: Multiple boundary concentrating solutions to Dirichlet problem of Hénon equation. Acta Math. Appl. Sin. Engl. Ser. 22, 137–162 (2006)

    Article  MathSciNet  Google Scholar 

  19. Pistoia, A., Serra, E.: Multi-peak solutions for the Hénon equation with slightly subcritical growth. Math. Z. 256, 75–97 (2007)

    Article  MathSciNet  Google Scholar 

  20. Serra, E.: Non-radial positive solutions for the Hénon equation with critical growth. Cal. Var. Partial Differential Equations 23, 301–326 (2005)

    Article  MathSciNet  Google Scholar 

  21. Smets, D., Su, J., Willem, M.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)

    Article  MathSciNet  Google Scholar 

  22. Wei, J., Yan, S.: Infinitely many non-radial solutions for the Hénon equation with critical growth. Rev. Mat. Iberoam. 29, 997–1020 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author is supported by the National Natural Science Foundation of China (Grant No. 11971147). The second author is partially supported by National Natural Science Foundation of China (Nos.12171183, 11831009) and the Fundamental Research Funds for the Central Universities(No. KJ02072020-0319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huafei Xie.

Additional information

Communicated by M. del Pino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Some known facts

Appendix A. Some known facts

In this section, we give some well-known facts used in this paper.

Lemma A.1

It holds

$$\begin{aligned}&\int _{{\mathbb {R}}^{N}}|x|^{\alpha }U_1^{p_{\alpha }}Z(x)dx=0, \end{aligned}$$
(A.1)
$$\begin{aligned}&\int _{{\mathbb {R}}^{N}}|x|^{\alpha }U^{p_{\alpha }}_{1}Z(x)\log (1+|x|^{2+\alpha })^{\frac{N-2}{2+\alpha }}dx=A(\alpha )<0, \end{aligned}$$
(A.2)
$$\begin{aligned}&\int _{{\mathbb {R}}^{N}}|x|^{\alpha }\frac{|x|^{2+\alpha }-1}{(1+|x|^{2+\alpha })^{\frac{N+4+3\alpha }{2+\alpha }}}dx=B(\alpha )<0. \end{aligned}$$
(A.3)

Proof

The proof of the above lemma can be found in [9, Lemma 3.7]. \(\square \)

Define

$$\begin{aligned} L_{\lambda }:=-\Delta -p_{\alpha }C(\alpha )|x|^{\alpha }\left( PU_{\lambda }\right) ^{p_{\alpha }-1}I. \end{aligned}$$

Then the linearized operator \(L_{\lambda }\) is a map from \(H^{1}_{0}(\Omega )\) to \(L^{2}(\Omega )\).

Consider the linearized problem

$$\begin{aligned} {\left\{ \begin{array}{ll} L_{\lambda }\Phi =\xi \quad \text {in}~~\Omega ,\\ \Phi =0\quad \quad \text {on}~~ \partial \Omega ,\\ \displaystyle \int _{\Omega }\nabla \Phi \cdot \nabla V_{\lambda }dx=0, \end{array}\right. } \end{aligned}$$
(A.4)

where \(V_{\lambda }:=\frac{\partial PU_{\lambda }}{\partial \lambda }\). We can show that \(L_{\lambda }\) is invertible in the weighted \(L^\infty \) space if \(\lambda \) is large enough. More precisely, using the similar argument in [9, Proposition 4.2], we can obtain the following result.

Proposition A.2

There exists \(\lambda _{0}>0\) and \(C>0\), independent of \(\lambda \), such that for all \(\lambda \ge \lambda _{0}\) and all \(\xi \in L^{\infty }(\Omega )\), problem (A.4) has a unique solution \(\Phi \equiv L^{-1}_{\lambda }(\xi )\). Moreover,

$$\begin{aligned} \Vert L^{-1}_{\lambda }(\xi )\Vert _{*}\le C\Vert \xi \Vert _{**}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Luo, P. & Xie, H. Qualitative analysis of single peaked solutions for the supercritical Hénon problem. Calc. Var. 61, 190 (2022). https://doi.org/10.1007/s00526-022-02295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02295-4

Mathematics Subject Classification

Navigation