Skip to main content
Log in

\(L^\infty \) continuation principle to the compressible non-isothermal nematic liquid crystal flows with zero heat conduction and vacuum

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We present a continuation principle for two-dimensional compressible non-isothermal nematic liquid crystal flows with zero heat conduction. We show that the concentration of the density or the pressure occurs in finite time for a large class of smooth initial data, which is responsible for the breakdown of strong solutions. It also gives an affirmative answer to a strong version of a problem proposed by J. Nash in 1950s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brézis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm. Partial Differ. Equ. 5(7), 773–789 (1980)

    Article  MathSciNet  Google Scholar 

  2. Chen, H., Wan, Z., Zhong, X.: Strong solutions to the 2D Cauchy problem of compressible non-isothermal nematic liquid crystal flows with vacuum at infinity. J. Math. Phys. 63(5), 051502 (2022)

    Article  MathSciNet  Google Scholar 

  3. Fan, J., Li, F.: Low Mach number limit of a compressible non-isothermal nematic liquid crystals model. Acta Math. Sci. Ser. B (Engl. Ed.) 39(2), 449–460 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Fan, J., Li, F., Nakamura, G.: Local well-posedness for a compressible non-isothermal model for nematic liquid crystals. J. Math. Phys. 59(3), 031503 (2018)

    Article  MathSciNet  Google Scholar 

  5. Feireisl, E.: Dynamics of viscous compressible fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  6. Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals. Arch. Ration. Mech. Anal. 205(2), 651–672 (2012)

    Article  MathSciNet  Google Scholar 

  7. Feireisl, E., Rocca, E., Schimperna, G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24(1), 243–257 (2011)

    Article  MathSciNet  Google Scholar 

  8. Friedman, A.: Partial differential equations. Dover Books on Mathematics, New York (2008)

    Google Scholar 

  9. Gao, J., Tao, Q., Yao, Z.: Strong solutions to the density-dependent incompressible nematic liquid crystal flows. J. Differ. Equ. 260, 3691–3748 (2016)

    Article  MathSciNet  Google Scholar 

  10. Guo, B., Xi, X., Xie, B.: Global well-posedness and decay of smooth solutions to the non-isothermal model for compressible nematic liquid crystals. J. Differ. Equ. 262(3), 1413–1460 (2017)

    Article  MathSciNet  Google Scholar 

  11. He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213(2), 235–254 (2005)

    Article  MathSciNet  Google Scholar 

  12. Huang, X., Wang, Y.: A Serrin criterion for compressible nematic liquid crystal flows. Math. Methods Appl. Sci. 36(11), 1363–1375 (2013)

    Article  MathSciNet  Google Scholar 

  13. Huang, X., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system. J. Differ. Equ. 254(2), 511–527 (2013)

    Article  MathSciNet  Google Scholar 

  14. Huang, T., Wang, C., Wen, H.: Strong solutions of the compressible nematic liquid crystal flow. J. Differ. Equ. 252(3), 2222–2265 (2012)

    Article  MathSciNet  Google Scholar 

  15. Huang, T., Wang, C., Wen, H.: Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch. Ration. Mech. Anal. 204(1), 285–311 (2012)

    Article  MathSciNet  Google Scholar 

  16. Jiang, F., Jiang, S., Wang, D.: On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain. J. Funct. Anal. 265(12), 3369–3397 (2013)

    Article  MathSciNet  Google Scholar 

  17. Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions. Arch. Ration. Mech. Anal. 214(2), 403–451 (2014)

    Article  MathSciNet  Google Scholar 

  18. Li, J., Xu, Z., Zhang, J.: Global existence of classical solutions with large oscillations and vacuum to the three-dimensional compressible nematic liquid crystal flows. J. Math. Fluid Mech. 20(4), 2105–2145 (2018)

    Article  MathSciNet  Google Scholar 

  19. Lions, P.L.: Mathematical topics in fluid mechanics. compressible models, vol. 2. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  20. Liu, S., Wang, S.: A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density. Acta Appl. Math. 147, 39–62 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Zheng, S., Li, H., Liu, S.: Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 37(7), 3921–3938 (2017)

    Article  MathSciNet  Google Scholar 

  22. Liu, Y., Zhong, X.: Global well-posedness to the 3D Cauchy problem of compressible non-isothermal nematic liquid crystal. Nonlinear Anal. Real World Appl. 58, 103219 (2021)

    Article  MathSciNet  Google Scholar 

  23. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  24. Sun, Y., Wang, C., Zhang, Z.: A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J. Math. Pures Appl. 95(1), 36–47 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, T.: Global existence and large time behavior of strong solutions to the 2-D compressible nematic liquid crystal flows with vacuum. J. Math. Fluid Mech. 18(3), 539–569 (2016)

    Article  MathSciNet  Google Scholar 

  26. Wang, T.: A regularity condition of strong solutions to the two-dimensional equations of compressible nematic liquid crystal flows. Math. Methods Appl. Sci. 40(3), 546–563 (2017)

    Article  MathSciNet  Google Scholar 

  27. Zhong, X.: Strong solutions to the Cauchy problem of the two-dimensional compressible non-isothermal nematic liquid crystal flows with vacuum and zero heat conduction. J. Math. Phys. 61(1), 011508 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhong.

Additional information

Communicated by M. Struwe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was partially supported by National Natural Science Foundation of China (Nos. 11901474, 12071359), Exceptional Young Talents Project of Chongqing Talent (No. cstc2021ycjh-bgzxm0153), the Innovation Support Program for Chongqing Overseas Returnees (Nos. cx2019130, cx2020082), and Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0049).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X. \(L^\infty \) continuation principle to the compressible non-isothermal nematic liquid crystal flows with zero heat conduction and vacuum. Calc. Var. 61, 174 (2022). https://doi.org/10.1007/s00526-022-02290-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02290-9

Mathematics Subject Classification

Navigation