Skip to main content
Log in

Min–max minimal hypersurfaces with obstacle

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study min–max theory for the area functional among hypersurfaces constrained in a smooth manifold with boundary. A Schoen–Simon-type regularity result is proved for integral varifolds which satisfy a variational inequality and restricts to a stable minimal hypersurface in the interior. Based on this, we show that for any admissible family of sweepouts \(\Pi \) in a compact manifold with boundary, there always exists a closed \(C^{1,1}\) hypersurface with codimension \(\ge 7\) singular set in the interior and having mean curvature pointing outward along boundary realizing the width \(\mathbf {L}(\Pi )\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Available Statement

This manuscript contains no associated data.

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95(3), 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Almgren, F.J.: The homotopy groups of the integral cycle groups. Topology 1(4), 257–299 (1962)

    Article  MathSciNet  Google Scholar 

  3. Frederick, J.A., Jr.: The theory of varifolds, 1965. Mimeographed notes, Princeton

  4. Almgren, F.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Bull. Am. Math. Soc. 81(1), 151–154 (1975)

    Article  MathSciNet  Google Scholar 

  5. Brézis, H., Kinderlehrer, D., Lewy, H.: The smoothness of solutions to nonlinear variational inequalities. Indiana Univ. Math. J. 23(9), 831–844 (1974)

    Article  MathSciNet  Google Scholar 

  6. Elisabetta, B., Massari, U.: Regularity of minimal boundaries with obstacles. Rendiconti del Seminario Matematico della Università di Padova, 66:129–135 (1982)

  7. Bombieri, E.: Regularity theory for almost minimal currents. Arch. Ration. Mech. Anal. 78(2), 99–130 (1982)

    Article  MathSciNet  Google Scholar 

  8. Jacob, B., Lu, W.: A mountain-pass theorem for asymptotically conical self-expanders. Peking Math. J., page in press. Available at: arXiv:2003.13857 (2021)

  9. Caffareli, L.A., Kinderlehrer, D.: Potential methods in variational inequalities. J. d’Anal. Math. 37(1), 285–295 (1980)

    Article  MathSciNet  Google Scholar 

  10. De Lellis, C., Ramic, J.: Min–max theory for minimal hypersurfaces with boundary. Ann. de l’Inst. Fourier 68, 1909–1986 (2018)

    Article  MathSciNet  Google Scholar 

  11. Federer, H.: Geometric measure theory. Grundlehren der Math, vol. 153. Wiss. Springer, New York (1969)

  12. Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 2(72), 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  13. Qiang, G., Martin, M.C.L., Xin, Z.: Curvature estimates for stable free boundary minimal hypersurfaces. J. für die Reine und Angew. Math. 2020(759):245–264 (2020)

  14. Gilbarg, D., Hörmander, L.: Intermediate schauder estimates. Arch. Ration. Mech. Anal. 74(4), 297–318 (1980)

    Article  MathSciNet  Google Scholar 

  15. Giusti, E.: Minimal surfaces with obstacles. In: Geometric Measure Theory and Minimal Surfaces, pp. 119–153. Springer (2010)

  16. Mariano, G., Pepe, L.: Esistenza e regolarità per il problema dell’area minima con ostacoli in \(n\) variabili. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 3, 25(3):481–507 (1971)

  17. David, G., Neil, S.T.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001). reprint of the 1998 edition

  18. Ilmanen, T.: A strong maximum principle for singular minimal hypersurfaces. Calc. Var. Partial Differ. Equ. 4(5), 443–467 (1996)

    Article  MathSciNet  Google Scholar 

  19. Irie, K., Marques, F.C., Neves, A.: Density of minimal hypersurfaces for generic metrics. Ann. Math. 2(187), 963–972 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Yangyang, L.: Existence of infinitely many minimal hypersurfaces in higher-dimensional closed manifolds with generic metrics. J. Differ. Geom., page in press. Available at: arXiv:1901.08440

  21. Fang-Hua, L.: Regularity for a Class of Parametric Obstacle Problems (Integrand, Integral Current, Prescribed Mean Curvature, Minimal Surface System). PhD thesis (1985)

  22. Lewy, H., Stampacchia, G.: On existence and smoothness of solutions of some non-coercive variational inequalities. Arch. Rational Mech. Anal. 41, 241–253 (1971)

    Article  MathSciNet  Google Scholar 

  23. Martin, M.-C.L., Xin, Z.: Min–max theory for free boundary minimal hypersurfaces, i: regularity theory. J. Differ. Geom. 118(3), 487–553 (2021)

    MathSciNet  MATH  Google Scholar 

  24. Miranda, M.: Frontiere minimali con ostacoli. Ann. Univ. Ferrara 16, 29–37 (1971)

    Article  MathSciNet  Google Scholar 

  25. Fernando, C.M., André, N.: Min–max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683–782 (2014)

    Article  MathSciNet  Google Scholar 

  26. Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. Invent. Math. 209(2), 577–616 (2017)

    Article  MathSciNet  Google Scholar 

  27. Fernando, C.M., André, N., Antoine, S.: Equidistribution of minimal hypersurfaces for generic metrics. Invent. Math. 216(2), 421–443 (2019)

    Article  MathSciNet  Google Scholar 

  28. Montezuma, R.: A mountain pass theorem for minimal hypersurfaces with fixed boundary. Calc. Var. Partial Differ. Equ. 59(6), 1–30 (2020)

    Article  MathSciNet  Google Scholar 

  29. Pitts, J.T.: Existence and regularity of minimal surfaces on Riemannian manifolds. Math, vol. 27. Notes. Princeton Univ. Press, Princeton, N.J. (1981)

  30. Leon, S.: Lectures on Geometric Measure Theory, volume 3 of Proc. Centre for Mathematical Analysis, Australian National University. Australian National University, Centre for Mathematical Analysis, Canberra (1983)

  31. Antoine, S.: Existence of infinitely many minimal hypersurfaces in closed manifolds. arXiv:1806.08816 (2018)

  32. Schoen, R., Simon, L.: Regularity of stable minimal hypersurfaces. Commun. Pure Appl. Math. 34(6), 741–797 (1981)

    Article  MathSciNet  Google Scholar 

  33. Tamanini, I.: Boundaries of caccioppoli sets with hölder-continuois normal vector. J. für die Reine und Angew. Math. 334, 27–39 (1982)

    MATH  Google Scholar 

  34. Zhihan, W.: Deformations of singular minimal hypersurfaces i, isolated singularities (2020)

  35. White, B.: A strong minimax property of nondegenerate minimal submanifolds. J. für die Reine und Angew. Math. 457, 203–218 (1994)

    MathSciNet  MATH  Google Scholar 

  36. White, B.: The maximum principle for minimal varieties of arbitrary codimension. Commun. Anal. Geom. 18(3), 421–432 (2010)

    Article  MathSciNet  Google Scholar 

  37. Zhou, X.: On the multiplicity one conjecture in min-max theory. Ann. Math. 192(3), 767–820 (2020)

    Article  MathSciNet  Google Scholar 

  38. Zhou, X., Zhu, J.J.: Existence of hypersurfaces with prescribed mean curvature i-generic min-max. Camb. J. Math. 8(2), 311–362 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am grateful to my advisor Fernando Codá Marques for his constant support and guidance. I’m thankful to Chao Li and Xin Zhou for suggesting this problem and inspiring discussions and to Fanghua Lin for helpful explanations to his thesis [21] on obstacle problem. I would also thank Yangyang Li, Zhenhua Liu and Lu Wang for their interest in this work, and thank anonymous reviewer for helpful comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihan Wang.

Additional information

Communicated by F.-H. Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Improved regularity for obstacle problems

A Improved regularity for obstacle problems

The goal of this section is to prove Theorems 2.11 and 2.12. First recall that under local coordinate chart \((\mathcal {U}, x^i)\) of \(\partial M\), if \(u\in C^1(\mathcal {U}, (-r_M/2, r_M/2))\), then \(\mathscr {H}^n(graph_{\partial M}(u))= \int _{\mathcal {U}} F(x, u, du)\), where \(0< F(x, z, p)\in C^{\infty }(\mathcal {U}\times (-r_M, r_M)\times \mathbb {R}^n)\) satisfies

$$\begin{aligned} \partial ^2_{pp}F(x, z, p)^{ij}\xi _i\xi _j \ge \lambda (x,z, p) |\xi |^2 >0,\ \ \ \ \forall \xi \in \mathbb {R}^n \end{aligned}$$
(A.1)
$$\begin{aligned} \Vert F\Vert _{C^4(\mathcal {U}\times [-r_M/2, r_M/2]\times \mathbb {B}^n_R)} \le C(M, g, R). \end{aligned}$$
(A.2)

If \(u\ge 0\) and \(graph_{\partial M}(u)\) is constrained stationary in M, then

$$\begin{aligned} \begin{aligned} 0\le&\frac{d}{dt}\Big |_{t=0}\int _{\mathcal {U}} F(x, u+t\phi , du+td\phi ) \ dx \\ \le&\int _{\mathcal {U}} \partial _p F(x,u, du)\cdot d\phi + \partial _z F(x, u, du)\phi \ dx, \end{aligned} \end{aligned}$$
(A.3)

for every \(\phi \in C_c^1(\mathcal {U})\) such that \(0<t<<1\), \(u+t\phi \ge 0\).

We shall deal with more general quasi-linear 2nd order elliptic operator of divergence form. For simplicity, write \(B_r(x):= \mathbb {B}^n_r(x)\subset \mathbb {R}^n\), \(B_r := B_r(0)\) and \(\Omega _r:= B_r\times [-1, 1]\times B_1\). Let \(\lambda , \Lambda >0\), \(\alpha \in (0, 1)\) be constant, \(A = A(x, z, p)\in C^3(B_2\times \mathbb {R}\times \mathbb {R}^n, \mathbb {R}^n)\), \(B=B(x, z, p)\in C^2(B_2\times \mathbb {R}\times \mathbb {R}^n)\) satisfying

$$\begin{aligned} \begin{aligned} \partial _p A^{ij}|_{B_2\times [-1, 1]\times B_1} \cdot \xi _i\xi _j&\ge \lambda |\xi |^2,\ \ \ \ \forall \xi \in \mathbb {R}^n; \\ \Vert A\Vert _{C^3(\Omega _2)} + \Vert B\Vert _{C^2(\Omega _2)}&\le \Lambda . \end{aligned} \end{aligned}$$
(A.4)

Let \(\mathscr {M}u := -div(A(x, u, \nabla u)) + B(x, u, \nabla u)\). Consider the variational inequality for a function \(u\in C^1(B_2, \mathbb {R}_+)\),

$$\begin{aligned} \begin{aligned} \int _{B_2} A(x, u, \nabla u)\cdot \nabla \phi + B(x, u, \nabla u)\phi \ dx&\ge 0,\ \ \ \forall \phi \in C_c^1(B_2, \mathbb {R}_+); \\ \int _{B_2} A(x, u, \nabla u)\cdot \nabla \phi + B(x, u, \nabla u)\phi \ dx&= 0,\ \ \ \forall \phi \in C_c^1(\{u>0\}). \end{aligned} \end{aligned}$$
(A.5)

Clearly, (A.3) implies (A.5), where \(A = \partial _p F\) and \(B = \partial _z F\).

Theorem A.1

\(\exists \delta _0 = \delta _0(\lambda , \Lambda , n, \alpha )\in (0, 1)\) such that if AB satisfies (A.4), \(0\le u\in C^{1,\alpha }_{loc}(B_2{\setminus } \{0\})\cap C^1(B_2)\) satisfies (A.5) and that \(\Vert u\Vert _{C^1(B_2)}\le \delta _0\), then \(u\in C^{1,1}_{loc}(B_2)\) and

$$\begin{aligned} \Vert u\Vert _{C^{1,1}(B_1)} \le C(\lambda , \Lambda , n, \alpha ). \end{aligned}$$

In view of the proof of Lemma 3.4, Theorem 2.11 follows from Theorem A.1.

The major effort is made to prove the following lemma,

Lemma A.2

There exists \(\delta _0 = \delta _0(\lambda , \Lambda , n, \alpha )\in (0, 1)\), \(\eta _0 = \eta _0(\lambda , \Lambda , n, \alpha )\in (0, \delta _0)\) s.t. if u be in Theorem A.1 and further satisfying

$$\begin{aligned} \Vert u\Vert _{C^{1, \alpha }(B_2)} \le 2\delta _0, \end{aligned}$$
(A.6)

and \(\eta <\eta _0\) such that the elliptic coefficients satisfies

$$\begin{aligned} \Vert \partial _x A\Vert _{C^2(\Omega _2)} +\Vert \partial _z A\Vert _{C^2(\Omega _2)} + \Vert B\Vert _{C^2(\Omega _2)} \le \eta . \end{aligned}$$
(A.7)

Then \(\Vert u\Vert _{C^{1,1}(B_1)} \le C(\lambda , \Lambda , n, \alpha )(\Vert u\Vert _{C^{1,\alpha }(B_2)} + \eta ) \).

Proof of Theorem A.1

Observe that if \(x_0\in B_1\), \(r\in (0, 1)\), let \(\tilde{u}(y):= u(x_0 + ry)/r\), then

$$\begin{aligned} \mathscr {M}u (x) = \frac{1}{r} [-div \tilde{A}(y, \tilde{u}(y), \nabla \tilde{u}(y)) + \tilde{B}(y, \tilde{u}(y), \nabla \tilde{u}(y))]_{y=(x-x_0)/r}, \end{aligned}$$

where

$$\begin{aligned} \tilde{A}(y, z, p)&:= A(x_0+ry, rz, p); \\ \tilde{B}(y, z, p)&:= rB(x_0+ry, rz, p). \end{aligned}$$

Hence, by Lemma A.2, for u satisfying the assumptions in Theorem A.1, \(u\in C^{1,1}_{loc}(B_2{\setminus } \{0\})\). Thus, for a.e. \(x\in B_2{\setminus } \{0\}\), \(\mathscr {M}u (x) = B(x, 0, 0)\). Together with (A.5) and that \(\Vert u\Vert _{C^1(B_2)} \le 1\), by a cutting off argument, \(\mathscr {M}u (x) = B(x, 0, 0)\cdot \chi _{\{u=0\}}\) in the weak sense on \(B_2\). Hence by standard elliptic estimate [17, Theorem 13.1], \(\exists \beta =\beta (\lambda , \Lambda , n)\in (0 ,1)\) such that \(\Vert u\Vert _{C^{1, \beta }(B_{3/2})}\le C(\lambda , \Lambda , n)\). Then repeat the rescaling argument above, by Lemma A.2, Theorem A.1 is proved. \(\square \)

Now we start to prove Lemma A.2.

Lemma A.3

\(\exists \eta _1 = \eta _1(\lambda , \Lambda , n, \alpha )\in (0,1)\) such that if \(\eta \le \eta _1\) and AB satisfies (A.4) and (A.7), \(\Vert \phi \Vert _{C^{1, \alpha }(\partial B_1)}\le \eta _1\). Then the equation

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathscr {M}u = 0\ &{} \text { in }B_1 \\ u = \phi \ &{} \text { on }\partial B_1 \end{array}\right. } \end{aligned}$$
(A.8)

has a unique solution \(u\in C^{1,\alpha }(Clos(B_1))\) satisfying

$$\begin{aligned} \Vert u\Vert _{C^{1, \alpha }}\le C(\lambda , \Lambda , n, \alpha )(\Vert \phi \Vert _{C^{1, \alpha }}+ \eta ). \end{aligned}$$
(A.9)

The uniqueness follows directly from comparison principle, see [17, Chapter 10]; We assert that the existence result does not follow directly from the classical Schauder estimate, since the latter requires boundary value to be \(C^{2,\alpha }\). Instead, one need to work in the space \(H_a^{(b)}\) introduced [14], where \(a = 2+\alpha \), \(b = 1+\alpha \). By [14, Theorem 5.1] and a fixed point argument, there exists \(u\in H^{(b)}_a(B_1)\) satisfying (A.8) with uniformly bounded \(H^{(b)}_a\)-norm; and (A.9) follows from [14, Lemma 2.1].

Proof of Lemma A.2

Let \(\delta _0, \eta _0\in (0, \eta _1)\) to be determined; u be in Lemma A.2.

Step 1 \(\forall x_0\in B_{3/2}\cap \{u=0\}\), \(\forall r\in (0, 1/2)\), let \(v=v_{x_0, r}\in C^{1,\alpha }(B_r(x_0))\) be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathscr {M}v = 0\ &{} \text {in}B_r(x_0) \\ v = u\ &{} \text {on}\partial B_r(x_0) \end{array}\right. } \end{aligned}$$

given by Lemma A.3. Also, let \(\bar{v}\) be the solution of

$$\begin{aligned} {\left\{ \begin{array}{ll} \mathscr {M}\bar{v} = 0\ &{} \text {in}B_r(x_0) \\ \bar{v} = 0\ &{} \text {on}\partial B_r(x_0). \end{array}\right. } \end{aligned}$$

Also note that \(\Vert u\Vert _{C^1(B_r)}, \Vert v\Vert _{C^1(B_r)}, \Vert \bar{v}\Vert _{C^1(B_r)}\le C(\lambda , \Lambda , n, \alpha )(\eta _0 + \delta _0)\) and \(\mathscr {M}u \ge 0\) in the weak sense. Hence, by taking \(\eta _0, \delta _0<< 1\) and using the maximum principle [17, Theorem 10.10],

$$\begin{aligned} 0\le u(x)- v(x) \le C(\lambda , \Lambda , n, \alpha )\cdot \sup _{B_r(x)\cap \partial \{u>0\}} (u - v) \le C(\lambda , \Lambda , n, \alpha )\Vert v^-\Vert _{C^0(B_r(x_0))}, \end{aligned}$$
(A.10)

for every \(x\in B_r(x_0)\); And \(\bar{v}\le v\) on \(B_r(x_0)\). Applying the classical \(C^0\) estimate on \(\tilde{v}(y):=\bar{v}(x_0+ry)/r\), one get

$$\begin{aligned} \Vert \bar{v}\Vert _{C^0(B_r(x_0))} \le C(\lambda , \Lambda , n, \alpha )r^2\Vert B(\cdot , 0, 0)\Vert _{C^0(B_r)}. \end{aligned}$$
(A.11)

Since \(v-\bar{v}\ge 0\) on \(B_r(x_0)\), \(\mathscr {M}v = \mathscr {M}\bar{v} = 0\) and \(v(x_0)\le u(x_0)=0\), by (A.4) and Harnack inequality,

$$\begin{aligned} \Vert v-\bar{v}\Vert _{C^0(B_{r/2}(x_0))} \le C(\lambda , \Lambda , n, \alpha )(v(x_0) - \bar{v}(x_0)) \le C(\lambda , \Lambda , n, \alpha )|\bar{v}(x_0)|. \end{aligned}$$
(A.12)

Combining (A.10), (A.11) and (A.12) one derive

$$\begin{aligned} 0\le u \le C(\lambda , \Lambda , n, \alpha )\Vert B(\cdot , 0, 0)\Vert _{C^0(B_r(x_0))}r^2\ \ \ \text { on }B_{r/2}(x_0). \end{aligned}$$
(A.13)

Step 2 \(\forall x_0\in \{u=0\}\), \(\nabla u(x_0) = 0\); \(\forall x_0\in \{u>0\}\cap B_{3/2}\), if \(l:=dist(x_0, \{u=0\})<1/8\), let \(y_0\in \{u=0\}\) such that \(|x_0 - y_0| = l\). Then by (A.13),

Hence by interior gradient estimate,

$$\begin{aligned} {\frac{1}{l}\Vert \nabla u\Vert _{C^0(B_{l/2}(x_0))} + \Vert \nabla ^2 u\Vert _{C^0(B_{l/2}(x_0))} \le C(\lambda , \Lambda , n, \alpha ). } \end{aligned}$$
(A.14)

Now that, \(\forall x_1, x_2\in B_1\), \(\rho :=|x_1-x_2|<1/20\), \(l_i:=dist(x_i, \{u=0\})\), \(l_1\le l_2\).

(1):

If \(l_2 \ge 1/8\), then directly by gradient estimate

$$\begin{aligned} |\nabla u(x_1)- \nabla u(x_2)|\le \rho \sup _{B_{\rho }(x_2)}\Vert \nabla ^2 u\Vert \le C(\lambda , \Lambda , n, \alpha )|x_1-x_2|; \end{aligned}$$
(2):

If \(2\rho \le l_2< 1/8\), then by (A.14),

$$\begin{aligned} |\nabla u(x_1)- \nabla u(x_2)|\le \rho \sup _{B_{l_2/2}(x_2)}\Vert \nabla ^2 u\Vert \le C(\lambda , \Lambda , n, \alpha )|x_1-x_2|; \end{aligned}$$
(3):

If \(l_2\le 2\rho \), then also by (A.14),

$$\begin{aligned}&|\nabla u(x_1)-\nabla u(x_2)| \le |\nabla u(x_1)|+|\nabla u(x_2)|\\&\quad \le C(\lambda , \Lambda , n, \alpha )(l_1+l_2)\le C(\lambda , \Lambda , n, \alpha )|x_1-x_2|. \end{aligned}$$

This proves the \(C^{1,1}\) bound of u. \(\square \)

Proof of Theorem 2.12

The regularity results in literature focus on minimizing boundaries; For general closed integral current, the strategy is to first decompose them into sum of boundary of Caccioppoli sets. One subtlety is that a priori the graphs may have incompatible orientations. We rule out this by choosing \(U_y\) small enough.

Recall that \(M^{n+1}\subset \mathbb {R}^L\) is a compact submanifold with boundary, extended to a closed manifold \(\tilde{M}^{n+1}\subset \mathbb {R}^L\); \(\tilde{U}\subset \tilde{M}\) is relatively open and \(U:=\tilde{U}\cap M\). Suppose \(U\cap \partial M \ne \emptyset \). \(T\in \mathcal {Z}_n(U)\) minimize mass among \(\{S\in \mathcal {Z}_n(U): spt(T-S)\subset \subset U\}\). Call such T constrained minimizing in U.

WLOG \(U, \tilde{U}, V:=\tilde{U}{\setminus } U\) are contractible and \(\mathbf {M}_U(T)>0\). By decomposition theorem [30, Chap 6,27.6], there’s a decreasing sequence of \(\mathscr {H}^{n+1}\)-measurable subsets \(\{U_j\subset \tilde{U}\}_{j\in \mathbb {Z}}\) such that

$$\begin{aligned} T = \sum _{j\in \mathbb {Z}} \partial [U_j];\ \ \ \ \Vert T\Vert = \sum _{j\in \mathbb {Z}} \Vert \partial [U_j]\Vert . \end{aligned}$$

In particular, \(\mathbf {M}_W(T) = \sum _{j\in \mathbb {Z}}\mathbf {M}_W(\partial [U_j])\) for all \(W\subset \subset \tilde{U}\), \(spt(\partial [U_j])\subset U\) and \(T_j := \partial [U_j]\) are also constrained minimizers in U (along \(\partial M\)). Thus for each j, either \(spt[U_j]\) or \(spt([\tilde{U}]- [U_j])\) contains V. WLOG, \(spt(\partial [U_0])\cap \partial M \ne \emptyset \) and \(spt[U_0]\supset V\). Hence \(\forall j\le 0\), \(spt[U_j]\supset V\); and \(\forall j>0\), either \(spt[U_j]\supset V\) or \(spt[U_j]\subset spt[U_0]{\setminus } V\).

Claim: \(\forall \mathcal {K}\subset U\cap \partial M\) compact, \(\exists \ r_1 = r_1(M, U, \mathcal {K})>0\) such that if \(T_0 = \partial [U_0]\), \(T_1 = \partial [U_1]\) are constrained minimizers in U and \(U_0\supset V\), \(U_1\subset U_0{\setminus } V\); \(y\in \mathcal {K}\cap spt(T_0)\). Then \(U_1\cap B_{r_1}(y)=\emptyset \).

Clearly, with this claim, for each \(j\in \mathbb {Z}\), \(T_j\llcorner B_{r_1}(y) = \partial [U_j']\llcorner B_{r_1}(y)\) is constrained minimizing in \(B_{r_1}(y)\), where \(U_j' := U_j\cap B_{r_1}(y)\) is either empty or containing V. Hence, by [24] and [33], \(T_j\llcorner B_{r_1}(y)\) is \(C^{1,\alpha }\) for some \(\alpha \in (0, 1)\). Then by Theorem 2.11, T is \(C^{1, 1}\) multiple graphs restricting to a smaller subset \(U_{y}\). This proves (1) of Theorem 2.12; and (2) follows from unique continuation of minimal hypersurfaces.

Proof of the claim: By [24], for every \(\delta \in (0,1), \exists \ r_2 = r_2(M, U, \mathcal {K}, \delta )>0\) and \(u_0\in C^1(U\cap \partial M)\) such that \(\forall y\in \mathcal {K}\cap spt(T_0)\),

$$\begin{aligned} T_0\llcorner B_{r_2}(y) = [graph_{\partial M}(u)]\llcorner B_{r_2}(y) \text {with} |\nabla u|\le \delta . \end{aligned}$$
(A.15)

Assuming the claim fails, then \(\exists \ y_j\in \mathcal {K}\cap spt(T_0^{(j)})\), \(T_i^{(j)} = \partial [U_i^{(j)}]\) being constrained minimizing boundary in U, where \(i=0,1\), \(j\ge 1\), \(U_0^{(j)}\supset V\), \(U_1^{(j)}\subset U_0^{(j)}{\setminus } V\) and \(U_1^{(j)}\cap B_{1/j}(y_j)\ne \emptyset \). Then \(spt(T_1^{(j)})\cap B_{1/j}(y_j)\ne \emptyset \).

Let \(j\rightarrow \infty \), \(y_j\rightarrow y_{\infty }\in \mathcal {K}\), and consider \((\eta _{y_j, 1/j})_{\sharp }T_1^{(j)}\rightarrow T_1^{(\infty )}\) being constrained minimizing in \(T_{y_{\infty }}^+M \cong \mathbb {R}^{n+1}_+\). The convergent is both in current and in varifold sense. Therefore, by (A.15) and that \(y_j\in \mathcal {K}\cap spt(T_0^{(j)}) \subset \partial M\), \(U_1^{(j)}\subset U_0^{(j)}{\setminus } V\), we have \(T_1^{(\infty )}=\partial [U_1^{(\infty )}]\) for some \(spt(U_1^{(\infty )})\subset T_{y_\infty }\partial M\), which is \(n+1\) negligible. In particular, \(T_1^{(\infty )} = 0\); On the other hand, by \(spt(T_1^{(j)})\cap B_{1/j}(y_j)\ne \emptyset \), Lemma 2.3 and Corollary 2.4, \(T_1^{(\infty )}\ne 0\) and we get a contradiction. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z. Min–max minimal hypersurfaces with obstacle. Calc. Var. 61, 175 (2022). https://doi.org/10.1007/s00526-022-02270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02270-z

Mathematics Subject Classification

Navigation