Skip to main content
Log in

The generalized porous medium equation on graphs: existence and uniqueness of solutions with \(\ell ^1\) data

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study solutions of the generalized porous medium equation on infinite graphs. For nonnegative or nonpositive integrable data, we prove the existence and uniqueness of mild solutions on any graph. For changing sign integrable data, we show existence and uniqueness under extra assumptions such as local finiteness or a uniform lower bound on the node measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Vol. 223. Birkhäuser Basel, (2004). https://doi.org/10.1007/978-3-0348-7928-6

  2. Anné, C., Balti, M., Torki-Hamza, N.: m-accretive Laplacian on a non symmetric graph. Indag. Math. 31, 277–293 (2020). https://doi.org/10.1016/j.indag.2020.01.005

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer Monographs in Mathematics. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-5542-5

    Book  Google Scholar 

  4. Bénilan, P.: “Equations d’évolution dans un espace de Banach quelconque et applications”. Thesis (Ph.D.)-Orsay, France: Université Paris-Sud, (1972)

  5. Bénilan, P., Brézis, H.: Solutions faibles d’équations d’évolution dans les espaces de Hilbert. Ann. Inst. Fourier 22(2), 311–329 (1972). https://doi.org/10.5802/aif.421

    Article  MathSciNet  MATH  Google Scholar 

  6. Bénilan, P., Crandall, M.G., Pazy, A.: “Nonlinear evolution equations in Banach spaces”. Preprint. (1988)

  7. Bianchi, D., Setti, A.G.: Laplacian cut-offs, porous and fast diffusion on manifolds and other applications. Calc. Var. Partial Differ. Equ. 57(4), 1–33 (2018). https://doi.org/10.1007/s00526-017-1267-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Bonforte, M., Grillo, G., Vazquez, J.L.: Fast diffusion flow on manifolds of nonpositive curvature. J. Evol. Equ. 8, 99–128 (2008). https://doi.org/10.1007/s00028-007-0345-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis, H., Strauss, W.A.: Semi-linear second-order elliptic equations in \(L^1\). J. Math. Soc. Japan 25(4), 565–590 (1973). https://doi.org/10.2969/JMSJ/02540565

    Article  MathSciNet  MATH  Google Scholar 

  10. Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations. Revised Edition. Vol. 13. Oxford Lecture Series in Mathematics and its Applications. Clarendon Press (1998)

  11. Ceccherini-Silberstein, T., Coornaert, M., Dodziuk, J.: The surjectivity of the combinatorial Laplacian on infinite graphs. Enseign. Math. 58(2), 125–130 (2012)

    Article  MathSciNet  Google Scholar 

  12. Collatz, L.: Functional Analysis and Numerical Mathematics. Academic Press, New York (1966)

    MATH  Google Scholar 

  13. Crandall, M.G.: Nonlinear semigroups and evolution governed by accretive operators. In: Nonlinear Functional Analysis and its Applications (Berkeley, California, 1983). Browder, F.E. (ed.), Vol. 45. Proceedings of the Symposium in Pure Mathematics 1. American Mathematical Society. pp. 305–337 (1986). https://doi.org/10.1090/pspum/045.1

  14. Crandall, M.G., Bénilan, P.: Regularizing effects of homogeneous evolution equations. Tech. rep. 2076. Winsconsin Univ-Madison Mathematics Research Center, pp. 1–23 (1980)

  15. Crandall, M.G., Liggett, T.M.: Generation of semi-groups of nonlinear transformations on general banach spaces. Amer. J. Math. 93(2), 265–298 (1971). https://doi.org/10.2307/2373376

    Article  MathSciNet  MATH  Google Scholar 

  16. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985). https://doi.org/10.1007/978-3-662-00547-7

    Book  MATH  Google Scholar 

  17. Deo, N.: Graph Theory with Applications to Engineering & Computer Science. Dover Publications, New York (2016)

    MATH  Google Scholar 

  18. Dipierro, S., Gao, Z., Valdinoci, E.: Global gradient estimates for nonlinear parabolic operators. ESAIM Control Optim. Calc. Var. 27(21), 1–37 (2021). https://doi.org/10.1051/cocv/2021016

    Article  MathSciNet  MATH  Google Scholar 

  19. Elmoataz, A., Toutain, M., Tenbrinck, D.: On the p-Laplacian and \(\infty \)-Laplacian on graphs with applications in image and data processing. SIAM J. Imag, Sci. 8, 2412–2451 (2015). https://doi.org/10.1137/15M1022793

    Article  MathSciNet  MATH  Google Scholar 

  20. Erbar, M., Maas, J.: Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst. 34(4), 1355–1374 (2014). https://doi.org/10.3934/dcds.2014.34.1355

    Article  MathSciNet  MATH  Google Scholar 

  21. Estrada, E., Knight, P.A.: A First Course in Network Theory. Oxford University Press, New York (2015)

    MATH  Google Scholar 

  22. Evans, L.C.: Nonlinear evolution equations in an arbitrary Banach space. Israel J. Math. 26, 1–42 (1977). https://doi.org/10.1007/BF03007654

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigor’yan, A., Lin, Y., Yang, Y.: Existence of positive solutions to some nonlinear equations on locally finite graphs. Sci. China Math. 60, 1311–1324 (2017). https://doi.org/10.1007/s11425-016-0422-y

    Article  MathSciNet  MATH  Google Scholar 

  24. Grigor’yan, A., Lin, Y., Yang, Y.: Kazdan-Warner equation on graph. Calc. Var. Partial Differ. Equ. 55(92), 1–13 (2016). https://doi.org/10.1007/s00526-016-1042-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Grigor’yan, A., Lin, Y., Yang, Y.: Yamabe type equations on graphs. J. Differ. Equ. 261, 4924–4943 (2016). https://doi.org/10.1016/j.jde.2016.07.011

    Article  MathSciNet  MATH  Google Scholar 

  26. Grillo, G., Ishige, K., Muratori, M.: Nonlinear characterizations of stochastic completeness. J. Math. Pures Appl. 139, 63–82 (2020). https://doi.org/10.1016/j.matpur.2020.05.008

    Article  MathSciNet  MATH  Google Scholar 

  27. Grillo, G., Meglioli, G., Punzo, F.: Global existence of solutions and smoothing effects for classes of reaction-diffusion equations on manifolds. J. Evol. Equ. 21, 2339–2375 (2021). https://doi.org/10.1007/s00028-021-00685-3

    Article  MathSciNet  MATH  Google Scholar 

  28. Grillo, G., Muratori, M.: Radial fast diffusion on the hyperbolic space. Proc. Lond. Math. Soc. 109, 283–317 (2014). https://doi.org/10.1112/plms/pdt071

    Article  MathSciNet  MATH  Google Scholar 

  29. Grillo, G., Muratori, M.: Smoothing effects for the porous medium equation on Cartan-Hadamard manifolds. Nonlinear Anal. 131, 346–362 (2016). https://doi.org/10.1016/j.na.2015.07.029

    Article  MathSciNet  MATH  Google Scholar 

  30. Grillo, G., Muratori, M., Punzo, F.: Blow-up and global existence for the porous medium equation with reaction on a class of Cartan-Hadamard manifolds. J. Differ. Equ. 266, 4305–4336 (2019). https://doi.org/10.1016/j.jde.2018.09.037

    Article  MathSciNet  MATH  Google Scholar 

  31. Grillo, G., Muratori, M., Punzo, F.: Fast diffusion on noncompact manifolds: Wellposedness theory and connections with semilinear elliptic equations. Trans. Amer. Math. Soc. 374, 6367–6396 (2021). https://doi.org/10.1090/tran/8431

    Article  MathSciNet  MATH  Google Scholar 

  32. Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with large initial data on negatively curved Riemannian manifolds. J. Math. Pures Appl. 113, 195–226 (2018). https://doi.org/10.1016/j.matpur.2017.07.021

    Article  MathSciNet  MATH  Google Scholar 

  33. Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with measure data on negatively curved Riemannian manifolds. J. Eur. Math. Soc. (JEMS) 20, 2769–2812 (2018). https://doi.org/10.4171/JEMS/824

    Article  MathSciNet  MATH  Google Scholar 

  34. Grillo, G., Muratori, M., Vázquez, J.L.: The porous medium equation on Riemannian manifolds with negative curvature. The large-time behaviour. Adv. Math. 314, 328–377 (2017). https://doi.org/10.1016/j.aim.2017.04.023

    Article  MathSciNet  MATH  Google Scholar 

  35. Güneysu, B., Keller, M., Schmidt, M.: A Feynman-Kac-Itô formula for magnetic Schrödinger operators on graphs. Probab. Theory Related Fields 165, 365–399 (2016). https://doi.org/10.1007/s00440-015-0633-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Güneysu, B., Milatovic, O., Truc, F.: Generalized Schrödinger semigroups on infinite graphs. Potent. Anal. 41, 517–541 (2014). https://doi.org/10.1007/s11118-013-9381-6

    Article  MATH  Google Scholar 

  37. Haeseler, S., Keller, M.: Generalized solutions and spectrum for Dirichlet forms on graphs. In: Lenz, D., Sobieczky, F.W.W. (eds.), Random Walks, Boundaries and Spectra. Vol. 64. Progress in Probability. Springer, Basel, pp. 181–199 (2011). https://doi.org/10.1007/978-3-0346-0244-0_10

  38. Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.K.: Laplacians on infinite graphs: Dirichlet and Neumann boundary conditions. J. Spectr. Theory 2, 397–432 (2012). https://doi.org/10.4171/JST/35

    Article  MathSciNet  MATH  Google Scholar 

  39. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012). https://doi.org/10.1017/CBO9780511810817

    Book  Google Scholar 

  40. Hua, B., Mugnolo, D.: Time regularity and long-time behavior of parabolic p-Laplace equations on infinite graphs. J. Differ. Equ. 259, 6162–6190 (2015). https://doi.org/10.1016/j.jde.2015.07.018

    Article  MathSciNet  MATH  Google Scholar 

  41. Huang, X., Keller, M., Masamune, J., Wojciechowski, R.K.: A note on self-adjoint extensions of the Laplacian on weighted graphs. J. Funct. Anal. 265, 1556–1578 (2013). https://doi.org/10.1016/j.jfa.2013.06.004

    Article  MathSciNet  MATH  Google Scholar 

  42. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1995). https://doi.org/10.1007/978-3-642-66282-9

    Book  MATH  Google Scholar 

  43. Keller, M., Lenz, D.: Dirichlet forms and stochastic completeness of graphs and subgraphs. J. Reine Angew. Math. 666, 189–223 (2012). https://doi.org/10.1515/CRELLE.2011.122

    Article  MathSciNet  MATH  Google Scholar 

  44. Keller, M., Lenz, D., Wojciechowski, R.K.: Graphs and Discrete Dirichlet Spaces. Grundlehren der mathematischen Wissenschaften. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81459-5

  45. Keller, M., Schwarz, M.: The Kazdan-Warner equation on canonically compactifiable graphs. Calc. Var. Partial Differ. Equ. 57(70), 1–18 (2018). https://doi.org/10.1007/s00526-018-1329-7

    Article  MathSciNet  MATH  Google Scholar 

  46. Kobayasi, K., Kobayashi, Y., Oharu, S.: Nonlinear evolution operators in Banach spaces. Osaka J. Math. 21, 281–310 (1984)

    MathSciNet  MATH  Google Scholar 

  47. Koberstein, J., Schmidt, M.: A note on the surjectivity of operators on vector bundles over discrete spaces. Arch. Math. 114, 313–329 (2020). https://doi.org/10.1007/s00013-019-01412-8

    Article  MathSciNet  MATH  Google Scholar 

  48. Lakshmikantham, V., Leela, S.: Nonlinear differential equations in abstract spaces. Vol. 2. International Series in Nonlinear Mathematics: Theory, Methods and Applications. Pergamon International Library, (1981). https://doi.org/10.1016/C2013-0-11031-8

  49. Lenz, D., Schmidt, M., Zimmermann, I.: Blow-up of nonnegative solutions of an abstract semilinear heat equation with convex source. (2021). arXiv:2108.11291 [math.AP]

  50. Lesne, A.: Complex networks: from graph theory to biology. Lett. Math. Phys. 78, 235–262 (2006). https://doi.org/10.1007/s11005-006-0123-1

    Article  MathSciNet  MATH  Google Scholar 

  51. Lieberman, E., Hauert, C., Nowak, M.A.: Evolutionary dynamics on graphs. Nature 433, 312–316 (2005). https://doi.org/10.1038/nature03204

    Article  Google Scholar 

  52. Lin, Y., Wu, Y.: Blow-up problems for nonlinear parabolic equations on locally finite graphs. Acta Math. Sci. Ser. B (Engl. Ed.) 38, 843–856 (2018). https://doi.org/10.1016/S0252-9602(18)30788-4

    Article  MathSciNet  MATH  Google Scholar 

  53. Lin, Y., Wu, Y.: The existence and nonexistence of global solutions for a semilinear heat equation on graphs. Calc. Var. Partial Differ. Equ. 56(102), 1–22 (2017). https://doi.org/10.1007/s00526-017-1204-y

    Article  MathSciNet  Google Scholar 

  54. Lin, Y., Yang, Y.: A heat flow for the mean field equation on a finite graph. Calc. Var. Partial Differ. Equ. 60(206), 1–15 (2021). https://doi.org/10.1007/s00526-021-02086-3

    Article  MathSciNet  Google Scholar 

  55. Liu, S., Yang, Y.: Multiple solutions of Kazdan-Warner equation on graphs in the negative case. Calc. Var. Partial Differ. Equ. 59(164), 1–15 (2020). https://doi.org/10.1007/s00526-020-01840-3

    Article  MathSciNet  MATH  Google Scholar 

  56. Lu, P., Ni, L., Vázquez, J.L., Villani, C.: Local Aronson-Bénilan estimates and entropy formulae for porous medium and fast diffusion equations on manifolds. J. Math. Pures Appl. 91, 1–19 (2009). https://doi.org/10.1016/j.matpur.2008.09.001

    Article  MathSciNet  MATH  Google Scholar 

  57. Meglioli, G., Punzo, F.: Blow-up and global existence for solutions to the porous medium equation with reaction and fast decaying density. Nonlinear Anal. 203, 112187 (2021). https://doi.org/10.1016/j.na.2020.112187

    Article  MathSciNet  MATH  Google Scholar 

  58. Milatovic, O.: Essential self-adjointness of magnetic Schrödinger operators on locally finite graphs. Integral Equ. Oper. Theory 71(13), 13–27 (2011). https://doi.org/10.1007/s00020-011-1882-3

    Article  MATH  Google Scholar 

  59. Milatovic, O., Truc, F.: Maximal accretive extensions of Schrödinger operators on vector bundles over infinite graphs. Integral Equ. Oper. Theory 81, 35–52 (2015). https://doi.org/10.1007/s00020-014-2196-z

    Article  MATH  Google Scholar 

  60. Milatovic, O., Truc, F.: Self-Adjoint Extensions of Discrete Magnetic Schrödinger Operators. Ann. Henri Poincaré 15, 917–936 (2014). https://doi.org/10.1007/s00023-013-0261-9

    Article  MathSciNet  MATH  Google Scholar 

  61. Mugnolo, D.: Parabolic theory of the discrete p-Laplace operator. Nonlinear Anal. 87, 33–60 (2013). https://doi.org/10.1016/j.na.2013.04.002

    Article  MathSciNet  MATH  Google Scholar 

  62. Nakanishi, N.: Graph Theory and Feynman Integrals. Vol. 11. Mathematics and Its Applications. Gordon and Breach (1971)

  63. Schmidt, M.: On the existence and uniqueness of self-adjoint realizations of discrete (magnetic) Schrödinger operators. In: Analysis and geometry on graphs and manifolds. Vol. 461. London Math. Soc. Lecture Note Ser. Cambridge University Press, Cambridge, pp. 250–327 (2020)

  64. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 30, 83–98 (2013). https://doi.org/10.1109/Msp.2012.2235192

    Article  Google Scholar 

  65. Slavík, A., Stehlík, P., Volek, J.: Well-posedness and maximum principles for lattice reaction-diffusion equations. Adv. Nonlinear Anal. 8, 303–322 (2019). https://doi.org/10.1515/anona-2016-0116

    Article  MathSciNet  MATH  Google Scholar 

  66. Stam, C.J., Reijneveld, J.C.: Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1(3), 1–19 (2007). https://doi.org/10.1186/1753-4631-1-3

    Article  Google Scholar 

  67. Stehlík, P.: Exponential number of stationary solutions for Nagumo equations on graphs. J. Math. Anal. Appl. 455, 1749–1764 (2017). https://doi.org/10.1016/j.jmaa.2017.06.075

    Article  MathSciNet  MATH  Google Scholar 

  68. Ta, V.-T., Elmoataz, A., Lézoray, O.: Nonlocal PDEs-Based Morphology on Weighted Graphs for Image and Data Processing. IEEE Trans. Image Process. 20, 1504–1516 (2011). https://doi.org/10.1109/TIP.2010.2101610

    Article  MathSciNet  MATH  Google Scholar 

  69. Vázquez, J.L.: Fundamental solution and long time behavior of the Porous Medium Equation in hyperbolic space. J. Math. Pures Appl. 104, 454–484 (2015). https://doi.org/10.1016/j.matpur.2015.03.005

    Article  MathSciNet  MATH  Google Scholar 

  70. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Scholarship Online (2006). https://doi.org/10.1093/acprof:oso/9780198569039.001.0001

  71. Willson, A.N., Jr.: On the solutions of equations for nonlinear resistive networks. AT &T Bell Labs. Tech. J. 47, 1755–1773 (1968). https://doi.org/10.1002/j.1538-7305.1968.tb00101.x

    Article  MathSciNet  MATH  Google Scholar 

  72. Wojciechowski, R.K.: Stochastic completeness of graphs. Thesis (Ph.D.)-City University of New York. ProQuest LLC, Ann Arbor, MI (2008). ISBN: 978-0549-58579-4

  73. Wu, Y.: Blow-up for a semilinear heat equation with Fujita’s critical exponent on locally finite graphs. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(133), 1–16 (2021). https://doi.org/10.1007/s13398-021-01075-7

    Article  MathSciNet  MATH  Google Scholar 

  74. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin (1995). https://doi.org/10.1007/978-3-642-61859-8

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was carried out by the first and third authors while they were at the Department of Science and High Technology of the University of Insubria in Como, Italy. The third author is financially supported by PSC-CUNY Awards, jointly funded by the Professional Staff Congress and the City University of New York, and the Collaboration Grant for Mathematicians, funded by the Simons Foundation. The authors would like to thank Delio Mugnolo for helpful comments and for pointing out references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Bianchi.

Additional information

Communicated by J. Jost.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Auxiliary results

In this appendix we collect several results which are used in various parts of the paper. The first result concerns the relationship between the Dirichlet Laplacian and restrictions of the formal Laplacian. For related material, see [43, 44].

Lemma A.1

Let \(F=(X,w,k,\mu )\) be a graph, let A be a subset of X such that \(\overset{\bullet }{\partial }A\ne \emptyset \) and let \(F_{\text {dir}} =(A, w_{|A\times A}, k_{\mathrm{dir}}, \mu _{|A})\) be the Dirichlet subgraph associated to A. Define

$$\begin{aligned} \Delta _{|A} :\mathrm{dom}\left( \Delta _{|A} \right) \subseteq C(X) \rightarrow C(A) \end{aligned}$$

with

$$\begin{aligned}&\mathrm{dom}\left( \Delta _{|A} \right) :=\left\{ u \in C(X) \mid u\equiv 0 \text{ on } X\setminus A, \, \sum _{y \in A} w(x,y)\left| u(y)\right| < \infty \quad \forall x \in A \right\} ,\\&\Delta _{|A}u(x):=\Delta u(x) \quad \text{ for } \text{ every } x \in A. \end{aligned}$$

Then, we have the following commutative diagrams

figure a

where \(\varvec{{\mathfrak {i}}}\) and \(\varvec{\pi }\) are the canonical embedding and the canonical projection, respectively, as defined in (2.3). In particular, we have \(\Delta _{\mathrm{dir}}\equiv \Delta _{|A}\varvec{{\mathfrak {i}}}\), \(\Delta _{\mathrm{dir}}\varvec{\pi } \equiv \Delta _{|A}\) and

$$\begin{aligned}&\Delta _{\mathrm{dir}}v(x) = \Delta \varvec{{\mathfrak {i}}}v(x) \qquad \forall v \in \mathrm{dom}(\Delta _{\mathrm{dir}})\subseteq C(A),\; \forall x \in A,\\&\Delta _{\mathrm{dir}}\varvec{\pi }u(x)= \Delta u(x) \qquad \forall u \in \mathrm{dom}\left( \Delta _{|A}\right) \subseteq C(X),\; \forall x \in A. \end{aligned}$$

If every node in \(\overset{\bullet }{\partial }A\) is connected to a finite number of nodes in A, then

$$\begin{aligned} \mathrm{dom}\left( \Delta _{|A}\right) = \mathrm{dom}\left( \Delta \right) \cap \left\{ u \in C(X) \mid u \equiv 0 \text{ on } X\setminus A \right\} \end{aligned}$$

and \(\Delta _{|A} u\) can be uniquely extended to X for every \(u \in \mathrm{dom}\left( \Delta _{|A}\right) \) in such a way that

$$\begin{aligned} \Delta _{|A} u(x)=\Delta u(x) \quad \forall \, x \in X, \end{aligned}$$

that is, \(\Delta _{|A}\) is the restriction of \(\Delta \) to the set of functions which vanish on \(X\setminus A\).

Proof

Clearly, \(\Delta _{|A}\) is well-defined and

$$\begin{aligned} \mathrm{dom}\left( \Delta _{|A}\right) \supseteq \mathrm{dom}\left( \Delta \right) \cap \left\{ u \in C(X) \mid u \equiv 0 \text{ on } X\setminus A \right\} . \end{aligned}$$

If every node in \(\overset{\bullet }{\partial }A\) is connected to a finite number of nodes in A, then for every \(u \in \mathrm{dom}\left( \Delta _{|A}\right) \) and \(x \in X\setminus A\)

$$\begin{aligned} \sum _{y \in X}w(x,y)\left| u(y)\right| =\sum _{y \in \mathring{\partial }A}w(x,y)\left| u(y)\right| < \infty . \end{aligned}$$

Therefore,

$$\begin{aligned} \mathrm{dom}\left( \Delta _{|A}\right) \subseteq \mathrm{dom}\left( \Delta \right) \cap \left\{ u \in C(X) \mid u \equiv 0 \text{ on } X\setminus A \right\} \end{aligned}$$

so that the two domains are equal as claimed. Furthermore, for every \(u \in \mathrm{dom}\left( \Delta _{|A}\right) \), we can uniquely extend \(\Delta _{|A} u\) to \(X\setminus A\) so as to satisfy \(\Delta _{|A} u=\Delta u\) by defining

$$\begin{aligned} \Delta _{|A} u(x) = -\frac{1}{\mu (x)} \sum _{y \in \mathring{\partial }A}w(x,y)u(y) \quad \text{ for } x \in X\setminus A. \end{aligned}$$

Observe now that

$$\begin{aligned} \mathrm{dom}\left( \Delta _{|A} \varvec{{\mathfrak {i}}}\right) =\left\{ v \in C(A) \mid \varvec{{\mathfrak {i}}} v \in \mathrm{dom}\left( \Delta _{|A}\right) \right\} \subseteq C(A) \end{aligned}$$

and if \(v \in C(A)\), then

$$\begin{aligned} \sum _{y \in X}w(x,y)\left| \varvec{{\mathfrak {i}}}v(y)\right| = \sum _{y \in A}w(x,y)\left| v(y)\right| \quad \text{ for } \text{ every } x \in A. \end{aligned}$$

Therefore, it is immediate to check that \(\mathrm{dom}\left( \Delta _{\mathrm{dir}}\right) = \mathrm{dom}\left( \Delta _{|A} \varvec{{\mathfrak {i}}}\right) \).

Finally, if \(v \in \mathrm{dom}\left( \Delta _{\mathrm{dir}}\right) \), then for every \(x \in A\) we have

$$\begin{aligned} \Delta _{\mathrm{dir}}v(x)&= \frac{1}{\mu _{|A}(x)}\sum _{y \in A} w_{|A\times A}(x,y)\left( v(x) - v(y)\right) +\frac{\kappa _{\mathrm{dir}}(x)}{\mu _{|A}(x)} v(x)\\&= \frac{1}{\mu _{|A}(x)}\sum _{y \in A} w_{|A\times A} (x,y)\left( v(x) - v(y)\right) + \frac{\kappa _{|A}(x) +b_{\mathrm{dir}}(x)}{\mu _{|A}(x)} v(x)\\&= \frac{1}{\mu (x)}\sum _{y \in A} w(x,y)\left( v(x) - v(y)\right) + \frac{\sum _{y \in \overset{\bullet }{\partial } A}w(x,y)}{\mu (x)}v(x) +\frac{\kappa (x)}{\mu (x)} v(x)\\&= \frac{1}{\mu (x)}\sum _{y \in X} w(x,y) \left( \varvec{{\mathfrak {i}}} v(x) -\varvec{{\mathfrak {i}}}v(y)\right) +\frac{\kappa (x)}{\mu (x)} \varvec{{\mathfrak {i}}}v(x)\\&= \Delta \varvec{{\mathfrak {i}}}v(x). \end{aligned}$$

This concludes the proof of diagram \(D_1\). The proof of diagram \(D_2\) is basically the same following suitable modifications. \(\square \)

The next theorem is a comparison principle for a nonlinear operator. This result generalizes [12,  Theorem 2, Section 23.1] and [43,  Theorem 8 and Proposition 3.1], see also the proof of Theorem 1.3.1 in [72]. In particular, we relax the assumptions on the function u by letting it not attain a minimum or maximum on X if the graph G does not have any infinite paths. We recall that for us a path is a walk without any repeated nodes.

Theorem A.2

(Comparison principle) Let \(G=\left( X, w, \kappa , \mu \right) \) be a connected graph. Let \(\lambda >0\) and \(v \in \mathrm{dom}\left( \Delta \right) \). Assuming that \(\psi :{\mathbb {R}}\rightarrow {\mathbb {R}}\) is strictly monotone increasing and \(\psi (0)\le 0\) we consider three cases:

(Case 1) There exists \(x_0 \in X\) such that u attains a minimum at \(x_0\), i.e.,

$$\begin{aligned} v(x_{0})=\inf _{x\in X} \{v(x)\} > -\infty . \end{aligned}$$

(Case 2) G does not contain any infinite path.

(Case 3) G has an infinite path and for every infinite path \(\{x_{n}\}\) we have \(\sum _{x_{n}} \mu (x_{n})=\infty \) and there exists \(p>0\) such that \(\sum _{x_{n}}|v(x_{n})|^p\mu (x_{n})<\infty \) .

In all the three cases, if \(\left( \Psi + \lambda \Delta \right) v \ge 0\), then \(v \ge 0\).

Assuming instead \(\psi (0)\ge 0\) and substituting \(v(x_0)=\sup _{x\in X} \{v(x)\} <\infty \) for \(v(x_0)=\inf _{x\in X} \{v(x)\} > -\infty \) in Case 1, if \(\left( \Psi + \lambda \Delta \right) v \le 0\), then \(v \le 0\). Moreover, in any case, if \(v(x)=0\) for some \(x\in X\), then \(v\equiv 0\).

Proof

Let \(v \in \mathrm{dom}\left( \Delta \right) \) be such that \(\left( \Psi + \lambda \Delta \right) v \ge 0\) for \(\psi (0)\le 0\) strictly monotone increasing. If \(v\ge 0\), then there is nothing to prove. Hence, we assume that there exists \(x_{0}\in X\) such that \(v(x_{0}) <0\). We will show that this leads to a contradiction in all three cases.

Since \(\psi (0)\le 0\) and \(\psi \) is strictly monotone increasing,

$$\begin{aligned} \psi (v(x_{0}))+ \lambda \frac{\kappa (x_{0})}{\mu (x_{0})}v(x_{0}) < 0. \end{aligned}$$
(A.1)

Furthermore, as \(\left( \Psi + \lambda \Delta \right) v(x_0) \ge 0\),

$$\begin{aligned} 0\le \psi (v(x_{0}))+\frac{\lambda }{\mu (x_{0})} \sum _{y\in X}w(x_{0},y)\left( v(x_{0})-v(y)\right) +\lambda \frac{\kappa (x_{0})}{\mu (x_{0})}v(x_{0}). \end{aligned}$$
(A.2)

Combining the above inequalities (A.1) and (A.2), we get

$$\begin{aligned} 0<-\left[ \psi (v(x_{0})) +\lambda \frac{\kappa (x_{0})}{\mu (x_{0})} v(x_{0}) \right] \le \frac{\lambda }{\mu (x_{0})}\sum _{y\in X} w(x_{0},y)\left( v(x_{0})-v(y)\right) \end{aligned}$$

and because \(w(\cdot ,\cdot )\ge 0\) and G is connected, there exists \(y=x_{1}\sim x_{0}\) such that \(v(x_{1})< v(x_{0})\). In particular, \(v(x_1)<0\).

Hence, we see that every node where v is negative is connected to a node where v is strictly smaller. This is the basic observation that will be used in all three cases.

(Case 1) From the discussion above, it is clear that v cannot achieve a negative minimum.

(Case 2) Iterating the procedure above, we find a sequence of distinct nodes \(\{x_{k}\}_{k=0}^n\) such that \(x_{0}\sim x_{1}\sim \cdots \sim x_{n}\) and

$$\begin{aligned} v(x_{n})< v(x_{n-1})< \ldots< v(x_{0}) <0. \end{aligned}$$

Since G does not have any infinite path this sequence must end which leads to a contradiction.

(Case 3) In this case, we can obtain an infinite sequence \(\{v(x_{n})\}_n\) such that \(\{x_{n}\}_n\) is an infinite path and

$$\begin{aligned} \ldots< v(x_{n})< v(x_{n-1})< \ldots< v(x_{0}) <0. \end{aligned}$$

It follows that \(|v(x_{n})|>|v(x_{0})|>0\), for every n, and therefore

$$\begin{aligned} \sum _{{n}}|v(x_{n})|^p\mu (x_{n})>|v(x_{0})|^p\sum _{n}\mu (x_{n})=\infty \end{aligned}$$

for every \(p>0\) which gives a contradiction.

Hence, we have established that \(v \ge 0\) in all three cases. Now, if there exists \(x_0 \in X\) such that \(v(x_0)=0\), then

$$\begin{aligned} 0\le \Psi v(x_{0}) + \lambda \Delta v(x_{0}) =-\frac{\lambda }{\mu (x_{0})}\sum _{y\in X}w(x_{0},y)v(y) \le 0 \end{aligned}$$

and thus \(v(y)=0\) for all \(y\sim x_0\). Using induction and the assumption that G is connected we get \(v\equiv 0\).

The proof that \(\left( \Psi + \lambda \Delta \right) v \le 0\) implies \(v \le 0\) when \(\psi (0)\ge 0\) is completely analogous. \(\square \)

Remark 7

The above proof also shows that if v satisfies \(\left( \Psi +\lambda \Delta \right) v \ge 0\), on any connected graph, \(\psi (0)\le 0\) and \(\min _{x \in X} v(x)\le 0\), then \(v\equiv 0\).

Remark 8

A closer look at the proof shows that the conclusion of the theorem also holds for the operator

$$\begin{aligned} \sigma \Psi +\lambda \Delta \end{aligned}$$

where \(\sigma \in C(X)\) is positive.

Corollary A.3

With the hypotheses of Theorem A.2, let \(\psi (0)= 0\) for \(\psi :{\mathbb {R}}\rightarrow {\mathbb {R}}\) is strictly monotone increasing. Let \(v_1, v_2\) be solutions of

$$\begin{aligned} \left( \Psi + \lambda \Delta \right) v_k = g_k, \qquad \lambda >0 \text{ and } g_k \in C(X) \text{ for } k=1,2. \end{aligned}$$

If \(g_1\ge g_2\), then \(v_1 \ge v_2\).

Proof

Notice that, since \(\psi \) is strictly increasing and \(\psi (0)=0\), there exists a positive function \(\sigma \in C(X)\) such that

$$\begin{aligned} \psi (v_1(x))-\psi (v_2(x))=\sigma (x) \psi (v_1(x)-v_2(x)) \end{aligned}$$

for all \(x \in X\). Indeed, we can define

$$\begin{aligned} \sigma (x)= {\left\{ \begin{array}{ll} 1&{}\text {if } v_1(x)=v_2(x)\\ \frac{\psi (v_1(x))-\psi (v_2(x))}{\psi (v_1(x)-v_2(x))} &{}\text {otherwise}. \end{array}\right. } \end{aligned}$$

It follows that \(v_1-v_2\) satisfies

$$\begin{aligned} \sigma \Psi (v_1-v_2) + \lambda \Delta (v_1-v_2)= g_1-g_2 \ge 0 \,\,\text { on } X \end{aligned}$$

and the conclusion follows from Remark 8. \(\square \)

Remark 9

As in Remark 7, the proof shows that if \(v_k\) satisfy \(\left( \Psi + \lambda \Delta \right) v_k = g_k\), \(g_1\ge g_2\) and \(\min _{x \in X}\{v_1(x)-v_2(x)\}\le 0\), then \(v_1 \equiv v_2\) and \(g_1 \equiv g_2\) on X

Finally, in the following two lemmas we discuss how to exhaust the graph via finite subgraphs which are nested and such that each subgraph is connected to the next subgraph. We note that as we do not assume local finiteness, we have to take a little bit of care in how we choose the exhaustion. Although this should certainly be well-known, for the convenience of the reader we include a short proof.

Let d denote the combinatorial graph metric, that is, the least number of edges in a path connecting two nodes. Fix a node \(x_1 \in X\) and let \(S_r=S_r(x_1)\) denote the sphere of radius \(r = 0, 1, 2, \ldots \) about \(x_0\), that is,

$$\begin{aligned} S_r =\{ x \in X \mid d(x,x_0)=r \}. \end{aligned}$$

For \(x \in S_r\), we call \(y \in X\) a forward neighbor of x if \(y \sim x\) and \(y \in S_{r+1}\). We will denote the set of forward neighbors of x via \(N_+(x)\), i.e.,

$$\begin{aligned} N_+(x) = \{ y \sim x \mid d(y,x_0) =d(x,x_0)+1 \}. \end{aligned}$$
Fig. 4
figure 4

Exhaustion of a locally finite graph G by a chain of Dirichlet subgraphs \(\{G_{\mathrm{dir},n}\}_n\). The figure is read from left to right, from top to bottom. The chain \(\{G_{\mathrm{dir},n}\}_n\) is built starting from an inner node \(x_0\) by applying the recursive procedure described in the proof of Lemma A.5. At each step \(n=1,2,3,\ldots \), the interior nodes in \(\mathring{X}_n\) are green while the inner boundary nodes in \(\mathring{\partial }X_n\) are light green. The nodes belonging to the exterior boundary \(\overset{\bullet }{\partial }X_n \subseteq X\setminus X_n\) are colored in light gray. We can visually see how every subgraph \(G_{\mathrm{dir},n}\) is still “chained” to the supergraph G by the Dirichlet killing term \(\kappa _{\mathrm{dir},n}\) which is depicted by red rings and red dashed lines. In particular, each \(G_{\mathrm{dir},n}\) is a Dirichlet subgraph of \(G_{\mathrm{dir},n+1}\)

We now use the set of forward neighbors to inductively create our exhaustion sequence.

Lemma A.4

Let \(G=(X,w,\kappa ,\mu )\) be a connected and infinite graph. Then there exists a sequence of connected and finite induced subgraphs \(G_n=(X_n, w_n, \kappa _n, \mu _n)\) with \(X_n\subset X_{n+1}\), \(\bigcup _{n=1}^\infty X_n= X\) and

$$\begin{aligned} \{ x \in X_n \mid x\sim y \text{ for } \text{ some } y \in X_{n+1} \setminus X_n \}\ne \emptyset \end{aligned}$$

for all \(n\in {\mathbb {N}}_0.\)

Proof

We arrange the forward neighbors of each node in a sequence. Let \(X_1 = \{x_0\}\). For \(X_2\) choose the first forward neighbor of \(x_0\) and add it to \(X_0\), that is, \(X_2=\{x_0, x_1 \}\) where \(N_+(x_0)=\{x_1,x_2, \dots \}\). We note that \(N_+(x_0) \ne \emptyset \) as the graph is infinite and connected.

Now, proceed inductively as follows: Given \(X_n\) let \(X_{n+1}\) consist of \(X_n\) and, for every node x in \(X_n\) we add to \(X_n\) the first forward neighbor in \(N_+(x)\) which is not included in \(X_n\) to get \(X_{n+1}\). Let \(G_n\) denote the induced subgraph.

As we only add at most a single forward neighbor for each node at every step, it follows that each \(X_n\) is finite with \(|X_n| \le 2^{n}\). It is clear by construction that \(G_n\) is connected. Furthermore, as the graph is infinite and connected, it follows that \(\{ x \in X_n \mid x\sim y \text{ for } \text{ some } y \in X_{n+1}\setminus X_n \}\ne \emptyset \) for each \(n \in {\mathbb {N}}\). Finally, to show that the union of the \(X_n\) is the entire node set, let \(x \in X\). Then, \(x \in S_r\) for some r which means that there exists a sequence \(\{y_k\}_{k=0}^r\) with \(y_0=x_0\), \(y_r=x\) and \(y_k \in S_k\) such that \(y_{k+1} \in N_{+}(y_k)\). As each node \(y_k\) will then be included in some set of the exhaustion \(X_n\), it follows that \(x \in \bigcup _{n=1}^\infty X_n\). This completes the proof. \(\square \)

In the locally finite case, the above can be simplified by just using balls for our exhaustion sets. See Fig. 4 for a visual representation. In this case, it is also possible to exhaust in such a way that we have an inclusion between the interiors of the exhaustion sets.

Lemma A.5

Let \(G=(X,w,\kappa ,\mu )\) be connected, infinite and locally finite. Then there exists a sequence of connected and finite induced subgraphs \(G_n=(X_n, w_n, \kappa _n, \mu _n)\) with \(\mathring{X}_n\subset \mathring{X}_{n+1}\), \(X_n\subset X_{n+1}\), \(\bigcup _{n=1}^\infty \mathring{X}_n= X\) and

$$\begin{aligned} \{ x \in X_n \mid x\sim y \text{ for } \text{ some } y \in X_{n+1}\setminus X_n \}\ne \emptyset \end{aligned}$$

for all \(n\in {\mathbb {N}}\).

Proof

We modify the construction of the previous lemma: We take \(X_1=\{x_0\}\) and, having constructed \(X_n\), we add to it all forward neighbors of nodes in \(X_n\) to get \(X_{n+1}\). Thus, \(X_{n+1}=B_n(x_0)=\{x \mid d(x,x_0)\le n\}.\) Since the graph is locally finite and connected it is clear that \(\cup _n X_n=X\) and, since G is infinite, for every n at least one node in \(X_n\) has a forward neighbor so that

$$\begin{aligned} \{ x \in X_n \mid x\sim y \text{ for } \text{ some } y \in X_{n+1} \setminus X_n \}\ne \emptyset . \end{aligned}$$

Finally, since a node \(x_n\) in \(X_n\) has no forward neighbors if and only if it belong to \(\mathring{X}_n\) is follows that \(\mathring{X}_n\subset \mathring{X}_{n+1}\). \(\square \)

Appendix B: Accretivity

In this appendix we prove that there exists a dense subset \(\Omega \) of \(\mathrm{dom}({\mathcal {L}})\) where \({\mathcal {L}}\) is accretive. This subset is of particular importance because every solution that is constructed while carrying out the proof of Theorem 1 belongs to \(\Omega \).

From now on, if G is infinite, then we fix an exhaustion \(\{X_n\}_{n=1}^\infty \) of X, i.e., a sequence of subsets \(X_n\) of X such that \(X_n \subseteq X_{n+1}\) and \(X = \cup _{n=1}^\infty X_n\), where we additionally assume that each \(X_n\) is finite. We denote by \(\varvec{{\mathfrak {i}}}_{n,\infty }\) the canonical embedding and by \(\varvec{\pi }_n\) the canonical projection for each \(X_n\):

$$\begin{aligned}&\varvec{{\mathfrak {i}}}_{n,\infty } :C(X_n)\rightarrow C(X) \quad \varvec{{\mathfrak {i}}}_{n,\infty }u(x) :={\left\{ \begin{array}{ll} u(x) &{} \text{ if } x \in X_n,\\ 0 &{} \text{ if } x \in X\setminus X_n; \end{array}\right. }\\&\varvec{\pi }_n :C(X) \rightarrow C(X_n) \qquad \varvec{\pi }_nu(x) :=u(x) \text{ for } \text{ every } x \in X_n. \end{aligned}$$

We remark that, for the purpose of the results collected here, the exhaustion \(\{X_n\}_{n=1}^\infty \) is not required to satisfy any additional properties other than that each \(X_n\) is finite.

We recall that on a graph \(G=(X,w,\kappa ,\mu )\) the operator \({\mathcal {L}} :\mathrm{dom}\left( {\mathcal {L}} \right) \subseteq \ell ^{1}\left( X,\mu \right) \rightarrow \ell ^{1}\left( X,\mu \right) \) is given by

$$\begin{aligned}&\mathrm{dom}\left( {\mathcal {L}} \right) :=\left\{ u \in \ell ^{1}\left( X,\mu \right) \mid \Phi u\in \mathrm{dom}\left( \Delta \right) , \Delta \Phi u \in \ell ^{1}\left( X,\mu \right) \right\} \\&{\mathcal {L}}u:=\Delta \Phi u. \end{aligned}$$

For a subset \(\Omega \subseteq \mathrm{dom}\left( {\mathcal {L}} \right) \), we write \({\mathcal {L}}_{|\Omega }\) for the restriction of \({\mathcal {L}}\) to \(\Omega \).

We first introduce a sequence of operators \({\mathcal {L}}_{n}\) whose purpose is to ‘nicely approximate’ the operator \({\mathcal {L}}\).

Definition B.1

(The operators \({\mathcal {L}}_n\)) Let \(G=(X,w,\kappa ,\mu )\) be a graph. We define

$$\begin{aligned} {\mathcal {L}}_{n}:\mathrm{dom}\left( {\mathcal {L}}_{n}\right) \subseteq \ell ^{1}\left( X,\mu \right) \rightarrow \ell ^{1}\left( X,\mu \right) \end{aligned}$$

by

$$\begin{aligned} \mathrm{dom}\left( {\mathcal {L}}_{n}\right) :=C_c(X), \quad {\mathcal {L}}_{n}u:=\varvec{{\mathfrak {i}}}_{n,\infty } \Delta _{\mathrm{dir},n}\Phi \varvec{\pi }_{n} u \end{aligned}$$

where \(\Delta _{\mathrm{dir},n}\) is the graph Laplacian associated to the Dirichlet subgraph \(G_{\mathrm{dir},n} \subseteq G\) on the node set \(X_n\).

We are going to prove that \({\mathcal {L}}_{n}\) is accretive for every n. This result will be a consequence of the next proposition for finite graphs.

Proposition B.2

Let \(G=(X,w,\kappa ,\mu )\) be a finite graph. Then,

$$\begin{aligned} \sum _{\begin{array}{c} x\in X:\\ u(x)\ne v(x) \end{array}} \left( \Delta \Phi u(x)-\Delta \Phi v(x)\right) \mathrm{sgn}(u(x)-v(x))\mu (x) \ge 0 \quad \forall \; u, v \in C(X). \end{aligned}$$

Proof

Define \(h:=\Phi u-\Phi v \in C(X)\). Since \(\phi \) is strictly monotone increasing and \(\phi (0)=0\)

$$\begin{aligned} \mathrm{sgn}( u(x)- v(x))= \mathrm{sgn} (\phi ( u(x))-\phi ( v(x)))=\mathrm{sgn}(h(x)) \end{aligned}$$
(B.1)

and, therefore,

$$\begin{aligned} (\phi (u(x))-\phi (v(x))) \mathrm{sgn}(u(x)-v(x)) =h(x) \mathrm{sgn}(h(x))= \left| h(x) \right| \ge 0 \quad \forall \, x \in X. \end{aligned}$$
(B.2)

By the linearity of \(\Delta \) and (B.1) we get

$$\begin{aligned} \sum _{\begin{array}{c} x\in X:\\ u(x)\ne v(x) \end{array}} \left( \Delta \Phi u(x)-\Delta \Phi v(x)\right) \mathrm{sgn}(u(x)-v(x))\mu (x)=\sum _{x\in X} \Delta h(x)\mathrm{sgn}(h(x))\mu (x). \end{aligned}$$

Since G is finite, from the Green’s identity, see [37, 44], we get

$$\begin{aligned} \sum _{x\in X} \Delta h(x)\mathrm{sgn}(h(x))\mu (x)&= \frac{1}{2}\sum _{x,y \in X} w(x,y)\left( \mathrm{sgn}(h(x)) -\mathrm{sgn}(h(y)) \right) \left( h(x) - h(y)\right) \\&\quad + \sum _{x\in X} \kappa (x) h(x) \mathrm{sgn}(h(x)). \end{aligned}$$

Combining the above identity with (B.2), we obtain

$$\begin{aligned} \sum _{x\in X} \Delta h(x)\mathrm{sgn}(h(x))\mu (x)\ge \frac{1}{2} \sum _{x,y \in X} w(x,y)\left( \mathrm{sgn}(h(x)) -\mathrm{sgn}(h(y)) \right) \left( h(x) - h(y)\right) . \end{aligned}$$

Setting, for ease of notation,

$$\begin{aligned} \Gamma (x,y):=w(x,y)\left( \mathrm{sgn}(h(x)) -\mathrm{sgn}(h(y))\right) \left( h(x) - h(y)\right) \end{aligned}$$

we have:

  1. (i)

    If \(\mathrm{sgn}(h(x))=0\), then \(\Gamma (x,y)=w(x,y)|h(y)|\ge 0\);

  2. (ii)

    If \(\mathrm{sgn}(h(y))=0\), then \(\Gamma (x,y)=w(x,y)|h(x)|\ge 0\);

  3. (iii)

    If \(\mathrm{sgn}(h(x))=\mathrm{sgn}(h(y))\), then \(\Gamma (x,y)=0\);

  4. (iv)

    If \(\mathrm{sgn}(h(y))=-\mathrm{sgn}(h(x))\), then \(\Gamma (x,y)= 2w(x,y)\left( |h(x)| + |h(y)|\right) \ge 0\).

We obtain \(\Gamma (x,y)\ge 0\) for every \(x,y \in X\) and the required conclusion follows. \(\square \)

We next show that \({\mathcal {L}}\) is accretive on finite graphs.

Corollary B.3

Let \(G=(X,w,\kappa ,\mu )\) be a finite graph. Then, \({\mathcal {L}}\) is accretive.

Proof

By condition (ii) in Definition 2.4, an operator \({\mathcal {L}}\) is accretive if \(\langle {\mathcal {L}} u -{\mathcal {L}} v, u - v \rangle _+ \ge 0\) for every \(u,v \in \mathrm{dom}\left( {\mathcal {L}}\right) \). From (2.5) in Remark 3, in the case of the \(\ell ^1\)-norm we have

$$\begin{aligned} \langle z, k \rangle _+&=\Vert k\Vert _1\left( \sum \limits _{\begin{array}{c} x\in X:\\ k(x)= 0 \end{array}}|z(x)|\mu (x) + \sum \limits _{\begin{array}{c} x\in X:\\ k(x)\ne 0 \end{array}} z(x)\mathrm{sgn}(k(x))\mu (x) \right) \\&\ge \Vert k\Vert _1\sum \limits _{\begin{array}{c} x\in X:\\ k(x)\ne 0 \end{array}} z(x) \mathrm{sgn}(k(x))\mu (x) \quad \forall \, z,k \in \ell ^1(X,\mu ). \end{aligned}$$

Therefore, to prove that \({\mathcal {L}}\) is accretive on \(\ell ^1(X,\mu )\), it is sufficient to prove that

$$\begin{aligned} \sum _{\begin{array}{c} x\in X:\\ u(x)\ne v(x) \end{array}} \left( {\mathcal {L}} u(x)- {\mathcal {L}} v(x)\right) \mathrm{sgn}(u(x)-v(x))\mu (x) \ge 0 \quad \forall \; u, v \in \mathrm{dom}({\mathcal {L}}), \end{aligned}$$
(B.3)

that is,

$$\begin{aligned} \sum _{\begin{array}{c} x\in X:\\ u(x)\ne v(x) \end{array}} \left( \Delta \Phi u(x)-\Delta \Phi v(x)\right) \mathrm{sgn}(u(x)-v(x))\mu (x) \ge 0 \quad \forall \; u, v \in C(X). \end{aligned}$$

Since G is finite, we conclude the proof by Proposition B.2. \(\square \)

We next establish that the operators \({\mathcal {L}}_{n}\) are accretive.

Corollary B.4

Let \(G=(X,w,\kappa ,\mu )\) be a graph. Then, \({\mathcal {L}}_{n}\) is accretive for every n.

Proof

By (B.3) in Corollary B.3, it suffices to show that

$$\begin{aligned} \sum _{\begin{array}{c} x\in X:\\ u(x)\ne v(x) \end{array}} \left( {\mathcal {L}}_{n}u(x)-{\mathcal {L}}_{n}v(x)\right) \mathrm{sgn}(u(x)-v(x)) \mu (x) \ge 0 \quad \forall \; u, v \in \mathrm{dom}({\mathcal {L}}_{n}), \end{aligned}$$

that is,

$$\begin{aligned}&\sum _{\begin{array}{c} x\in X:\\ u(x)\ne v(x) \end{array}} \left( \varvec{{\mathfrak {i}}}_{n,\infty } \Delta _{\mathrm{dir},n}\Phi \varvec{\pi }_{n} u(x) -\varvec{{\mathfrak {i}}}_{n,\infty } \Delta _{\mathrm{dir},n}\Phi \varvec{\pi }_{n} v(x)\right) \mathrm{sgn}(u(x)-v(x))\mu (x) \ge 0 \quad \forall \; u, v \in C_c(X). \end{aligned}$$

Let us observe that the left-hand side of the above is equal to

$$\begin{aligned} \sum _{\begin{array}{c} x\in X_n:\\ \varvec{\pi }_{n}u(x) \ne \varvec{\pi }_{n}v(x) \end{array}} \left( \Delta _{\mathrm{dir},n}\Phi \varvec{\pi }_{n} u(x)-\Delta _{\mathrm{dir},n}\Phi \varvec{\pi }_{n} v(x)\right) \mathrm{sgn}(\varvec{\pi }_{n}u(x) -\varvec{\pi }_{n}v(x))\mu (x). \end{aligned}$$

Since \(\varvec{\pi }_{n} u, \varvec{\pi }_{n} v \in C(X_n)\) and \(\Delta _{\mathrm{dir},n}\) is the graph Laplacian associated to the finite graph \(G_{\mathrm{dir},n}\) with node set \(X_n\), by Proposition B.2 we conclude that \({\mathcal {L}}_{n}\) is accretive. \(\square \)

The sequence of operators \({\mathcal {L}}_{n}\) defines a subset \(\Omega \) of \(\mathrm{dom}({\mathcal {L}})\). As we will see below, \(\Omega \) is dense in \(\mathrm{dom}({\mathcal {L}})\) and \({\mathcal {L}}\) restricted to \(\Omega \) is accretive. Let us introduce the following notation for the support of a function: Given \(u \in C(X)\) we let

$$\begin{aligned} \mathrm{supp}~u :=\{x\in X \mid u(x)\ne 0\}. \end{aligned}$$

We start by defining the subset of the domain of interest.

Definition B.5

(The set \(\Omega \)) Let \(G=(X,w,\kappa ,\mu )\) be a graph. We define \(\Omega \subseteq \mathrm{dom}({\mathcal {L}})\) by letting

$$\begin{aligned} \Omega :=\mathrm{dom}({\mathcal {L}}) = C(X) \end{aligned}$$

if G is finite and

$$\begin{aligned} \Omega :=\{u \in \mathrm{dom}({\mathcal {L}}) \mid \exists \, \{u_n\}_n \text{ s.t. } \mathrm{supp}~u_n \subseteq X_n,\; \lim _{n\rightarrow \infty }\Vert u_n -u \Vert =0,\; \lim _{n\rightarrow \infty }\Vert {\mathcal {L}}_{n}u_n -{\mathcal {L}}u \Vert =0 \} \end{aligned}$$

if G is infinite.

While the definition of \(\Omega \) depends on the choice of the exhaustion, this set always contains all finitely supported functions as will be shown in Lemma B.7. In order to establish this, we first prove that the finitely supported functions are contained in the domain of \({\mathcal {L}}\).

Lemma B.6

Let \(G=(X,w,\kappa ,\mu )\) be a graph. Then, \(C_c(X) \subseteq \mathrm{dom}({\mathcal {L}})\).

Proof

Let \(u \in C_c(X)\). Then, \(u(x) = \sum _{j=1}^n \alpha _j \delta _{x_j}(x)\) where \(\alpha _j \in {\mathbb {R}}\) and

$$\begin{aligned} \delta _{x_j}(x)={\left\{ \begin{array}{ll} 1 &{} \text{ if } x=x_j,\\ 0 &{}\text{ otherwise }. \end{array}\right. } \end{aligned}$$

Therefore, by linearity, \(\Delta (C_c(X))\subseteq \ell ^1(X,\mu )\) if and only if \(\Delta \delta _{z} \in \ell ^1(X,\mu )\) for every \(z\in X\). Fix \(z \in X\) and observe that

$$\begin{aligned} \sum _{x\in X}|\Delta \delta _{z}(x)|\mu (x)&\le \sum _{x\in X}\mathrm{Deg}(x)\delta _{z}(x)\mu (x) +\sum _{x\in X}\sum _{y\in X}w(x,y)|\delta _{z}(y)|\\&= \mathrm{Deg}(z)\mu (z) + \sum _{x\in X}w(x,z) < \infty \end{aligned}$$

so that \(\Delta (C_c(X)) \subseteq \ell ^1(X,\mu )\). Since \(\Phi u \in C_c(X)\) for every \(u \in C_c(X)\), it follows that \(\Phi u\in \mathrm{dom}(\Delta )\) and \(\Delta \Phi u \in \ell ^1(X,\mu )\), that is, \(u \in \mathrm{dom}({\mathcal {L}}\)). \(\square \)

We now show that the set \(\Omega \) contains the finitely supported functions.

Lemma B.7

Let \(G=(X,w,\kappa ,\mu )\) be a graph. Then, \(C_c(X) \subseteq \Omega \). In particular,

$$\begin{aligned} \overline{\Omega }=\overline{\mathrm{dom}({\mathcal {L}})}=\ell ^1(X,\mu ). \end{aligned}$$

Proof

Let us fix \(u \in C_c(X)\). From Lemma B.6, we know that \(u\in \mathrm{dom}({\mathcal {L}})\). Define

$$\begin{aligned} u_n(x):=\varvec{{\mathfrak {i}}}_{n,\infty } \varvec{\pi }_n u(x)= {\left\{ \begin{array}{ll} u(x) &{} \text{ if } x \in X_n,\\ 0 &{}\text{ otherwise }. \end{array}\right. } \end{aligned}$$

Clearly, \(\mathrm{supp}~u_n \subseteq X_n\) and \(\lim _{n\rightarrow \infty }\Vert u_n -u \Vert =0\). Since, \(u\in C_c(X)\), there exists an \(N>0\) such that \(u(x)=0\) for every \(x\in X\setminus X_N\). In particular, \(\Phi u_n(x)=0\) for every \(x\in X\setminus X_n\), \(n\ge N\) and \(\Phi u_n=\Phi u\) for every \(n\ge N\).

By Lemma A.1, we have \(\Phi u_n \in \mathrm{dom}(\Delta _{|X_n})\) for every \(n\ge N\) and then

$$\begin{aligned} \Delta _{\mathrm{dir},n}\varvec{\pi }_n \Phi u_n (x) = \Delta \Phi u_n (x) = \Delta \Phi u (x) \quad \forall \; x\in X_n,\; n\ge N, \end{aligned}$$

that is,

$$\begin{aligned} \Delta _{\mathrm{dir},n}\varvec{\pi }_n \Phi u_n = \varvec{\pi }_n \Delta \Phi u \quad \forall \; n\ge N. \end{aligned}$$

Therefore, using the trivial fact that \(\Phi \varvec{\pi }_n=\varvec{\pi }_n\Phi \),

$$\begin{aligned} {\mathcal {L}}_{n}u_n = \varvec{{\mathfrak {i}}}_{n,\infty } \Delta _{\mathrm{dir},n}\Phi \varvec{\pi }_n u_n =\varvec{{\mathfrak {i}}}_{n,\infty } \Delta _{\mathrm{dir},n}\varvec{\pi }_n \Phi u_n =\varvec{{\mathfrak {i}}}_{n,\infty } \varvec{\pi }_n\Delta \Phi u =\varvec{{\mathfrak {i}}}_{n,\infty } \varvec{\pi }_n{\mathcal {L}} u, \quad \forall \; n\ge N \end{aligned}$$

and, since \({\mathcal {L}}u \in \ell ^1(X,\mu )\), it follows that \(\lim _{n\rightarrow \infty }\Vert {\mathcal {L}}_{n}u_n - {\mathcal {L}} u\Vert =0\) by dominated convergence. \(\square \)

To conclude this appendix, we prove that \({\mathcal {L}}_{|\Omega }\) is accretive.

Lemma B.8

Let \(G=(X,w,\kappa ,\mu )\) be a graph. Then, \({\mathcal {L}}_{|\Omega }\) is accretive.

Proof

If G is finite, then \(\Omega = \mathrm{dom}({\mathcal {L}})\) and \({\mathcal {L}}\) is accretive by Corollary B.3. If G is infinite, let \(u,v \in \Omega \). Then, by the definition of \(\Omega \), there exists \(\{u_n\}_n, \{v_n\}_n\) such that

$$\begin{aligned} \lim _{n\rightarrow \infty }\Vert u_n-u\Vert =\lim _{n\rightarrow \infty }\Vert v_n-v\Vert =0, \qquad \lim _{n\rightarrow \infty }\Vert {\mathcal {L}}_{n}u_n-{\mathcal {L}}u\Vert =\lim _{n\rightarrow \infty }\Vert {\mathcal {L}}_{n}v_n-{\mathcal {L}}v\Vert =0. \end{aligned}$$

By the accretivity of \({\mathcal {L}}_{n}\) established in Corollary B.4 above, it follows readily that

$$\begin{aligned}&\left\| (u - v) + \lambda \left( {\mathcal {L}}u -{\mathcal {L}}v\right) \right\| = \lim _{n\rightarrow \infty } \left\| (u_n - v_n) + \lambda \left( {\mathcal {L}}_{n}u_n - {\mathcal {L}}_{n}v_n\right) \right\| \\&\quad \ge \lim _{n\rightarrow \infty }\Vert u_n - v_n\Vert = \Vert u - v\Vert . \end{aligned}$$

This completes the proof. \(\square \)

Remark 10

One might be tempted to identify \(\Omega \) with

$$\begin{aligned}&\Omega '=\{u\in \mathrm{dom}({\mathcal {L}})\mid \exists \, \{u_n\}_n \text{ s.t. } u_n\in C_c(X),\\&\quad \lim _{n\rightarrow \infty }\Vert u_n -u \Vert =0,\; \lim _{n\rightarrow \infty }\Vert {\mathcal {L}}_{\mathrm{min}} u_n -{\mathcal {L}}u \Vert =0 \} \end{aligned}$$

where \({\mathcal {L}}_{\mathrm{min}}\) is the minimal operator, that is, \({\mathcal {L}}_{\mathrm{min}}:={\mathcal {L}}_{|C_c(X)}\). It is possible to show that \({\mathcal {L}}\) is accretive on \(\Omega '\) but unfortunately \(\Omega \) is not equal to \(\Omega '\). In particular, the solutions that are constructed in the proof of Theorem 1 may not belong to \(\Omega '\). The main problem is that

$$\begin{aligned} | ({\text {id}} + \lambda \mathcal {L}_{{\text {min}}})u_n(x) - g(x)|={\left\{ \begin{array}{ll} 0 &{}\text{ if } x\in X_n,\\ \sum _{{y\in X_n}}w(x,y)u_n(y) + g(x) &{}\text{ if } x \in X\setminus X_n \end{array}\right. } \end{aligned}$$

with

$$\begin{aligned} | ({\text {id}} + \lambda \mathcal {L}_{{\text {min}}})u_n(x) - g(x)|={\left\{ \begin{array}{ll} 0 &{}\text{ if } x\in X_n,\\ \left| \lambda \sum _{{y\in X_n}}w(x,y)u_n(y) + g(x)\right| &{}\text{ if } x \in X\setminus X_n \end{array}\right. } \end{aligned}$$

and then \(\Vert (\mathrm{id} + \lambda {\mathcal {L}}_{\mathrm{min}})u_n - g\Vert \) does not necessarily tend to 0. As a consequence, we cannot infer that \(\lim _{n\rightarrow \infty }\Vert {\mathcal {L}}_{\mathrm{min}} u_n -{\mathcal {L}}u \Vert =0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianchi, D., Setti, A.G. & Wojciechowski, R.K. The generalized porous medium equation on graphs: existence and uniqueness of solutions with \(\ell ^1\) data. Calc. Var. 61, 171 (2022). https://doi.org/10.1007/s00526-022-02249-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02249-w

Mathematics Subject Classification

Navigation