Skip to main content
Log in

A partial uniqueness result and an asymptotically sharp nonuniqueness result for the Zhikov problem on the torus

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the stationary diffusion equation \(-\mathrm {div} (\nabla u + bu )=f\) in d-dimensional torus \(\mathbb {T}^d\), where \(f\in H^{-1}\) is a given forcing and \(b\in L^p\) is a divergence-free drift. Zhikov (Funkts Anal Prilozhen, 38(3):15–28, 2004) considered this equation in the case of a bounded, Lipschitz domain \(\Omega \subset \mathbb {R}^d\), and proved existence of solutions for \(b\in L^{2d/(d+2)}\), uniqueness for \(b\in L^2\), and has provided a point-singularity counterexample that shows nonuniqueness for \(b\in L^{3/2-}\) and \(d=3,4,5\). We apply a duality method and a DiPerna–Lions-type estimate to show uniqueness of the solutions constructed by Zhikov for \(b\in W^{1,1}\). We use a Nash iteration to demonstrate sharpness of this result, and also show that solutions in \(H^1\cap L^{p/(p-1)}\) are flexible for \(b\in L^p\), \(p\in [1,2(d-1)/(d+1))\); namely we show that the set of \(b\in L^p\) for which nonuniqueness in the class \(H^1\cap L^{p/(p-1)}\) occurs is dense in the divergence-free subspace of \(L^p\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

There is no data associated with the project.

References

  1. Alt, H.W.: Linear functional analysis. Universitext. Springer, London, Ltd., London, 2016. An application-oriented introduction, Translated from the German edition by Robert Nürnberg

  2. Bogovskiĭ, M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248(5), 1037–1040 (1979)

    MathSciNet  Google Scholar 

  3. Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators \({\rm div}\) and \({\rm grad}\). In: Theory of Cubature Formulas and the Application of Functional Analysis to Problems of Mathematical Physics, vol. 1980 of Trudy Sem. S. L. Soboleva, No. 1, pp. 5–40, 149. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1980

  4. Buckmaster, T., Colombo, M., Vicol, V.: Wild solutions of the Navier–Stokes equations whose singular sets in time have hausdorff dimension strictly less than 1. 2018. To appear in J. Eur. Math. Soc. https://doi.org/10.4171/JEMS/1162

  5. Buckmaster, T., De Lellis, C., Székelyhidi, L., Jr., Vicol, V.: Onsager’s conjecture for admissible weak solutions. Commun. Pure Appl. Math. 72(2), 229–274 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. (2), 189(1), 101–144 (2019)

  7. Cheskidov, A., Luo, X.: Sharp nonuniqueness for the Navier–Stokes equations. (2020). arXiv:2009.06596

  8. Daneri, S., Székelyhidi, L., Jr.: Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 224(2), 471–514 (2017)

    Article  MathSciNet  Google Scholar 

  9. De Lellis, C., Székelyhidi, Jr., L.: The Euler equations as a differential inclusion. Ann. Math. (2), 170(3), 1417–1436 (2009)

  10. De Lellis, C., Székelyhidi, L., Jr.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

  11. DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)

    Article  MathSciNet  Google Scholar 

  12. Fannjiang, A., Papanicolaou, G.: Diffusion in turbulence. Probab. Theory Related Fields 105(3), 279–334 (1996)

    Article  MathSciNet  Google Scholar 

  13. Filonov, N.: On the regularity of solutions to the equation \(-\Delta u+b\cdot \nabla u=0\). Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 410(Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 43:168–186, 189 (2013)

  14. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Springer Monographs in Mathematics. Springer, New York, second edition, 2011. Steady-state problems

  15. Isett, P.: A Proof of Onsager’s Conjecture. Ann. Math. (2), 188(3), 871–963 (2018)

  16. Luo, X.: Stationary solutions and nonuniqueness of weak solutions for the Navier–Stokes equations in high dimensions. Arch. Ration. Mech. Anal. 233(2), 701–747 (2019)

    Article  MathSciNet  Google Scholar 

  17. Modena, S., Sattig, G.: Convex integration solutions to the transport equation with full dimensional concentration. Ann. Inst. H. Poincaré Anal. Non Linéaire, 37(5), 1075–1108 (2020)

  18. Modena, S., Székelyhidi, Jr., L.: Non-uniqueness for the transport equation with Sobolev vector fields. Ann. PDE, 4(2), Paper No. 18, 38 (2018)

  19. Müller, S., Šverák, V.: Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. Math. (2), 157(3), 715–742 (2003)

  20. Nash, J.: \(C^1\) isometric imbeddings. Ann. Math. 2(60), 383–396 (1954)

    Article  Google Scholar 

  21. Seregin, G., Silvestre, L., Šverák, V., Zlatoš, A.: On divergence-free drifts. J. Differ. Equ. 252(1), 505–540 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zhikov, V.V.: Remarks on the uniqueness of the solution of the Dirichlet problem for a second-order elliptic equation with lower order terms. Funktsional. Anal. i Prilozhen. 38(3), 15–28 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to an anonymous referee for many detailed and insightful comments. T.C. is grateful to A. S. Mikhailov from the St. Petersburg branch of Steklov Institute for introducing him to the problem and interesting discussions. We are grateful to T. Komorowski from IMPAN for pointing out the potential role of Sobolev regularity of b, and to M. Małogrosz for helpful discussions. T.C. was supported by the National Science Centre (NCN) grant SONATA BIS 7 UMO-2017/26/E/ST1/00989. W.S.O. was supported in part by the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech S. Ożański.

Additional information

Communicated by L. Szekelyhidi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of the maximum principle (5)

Appendix: Proof of the maximum principle (5)

Here we show that, if \(f\in L^\infty \) and \(b\in L^2\) satisfies the divergence-free condition (1), then any solution \(u\in L^\infty \cap \dot{H}^1\) to \(-\mathrm{{div\ }}(\nabla u + bu ) =f\) (in the sense of (3)) satisfies

$$\begin{aligned} \Vert u \Vert _{\infty } \le C_n \Vert f \Vert _\infty , \end{aligned}$$
(35)

where \(C_n>0\) depends only on the dimension d. Note that, since the constant does not depend on b, this proves (35) for all \(u\in \dot{H}^1\) (i.e. we can obtain \(u\in L^\infty \), rather than assume it), which is (5), as desired. Indeed, one can approximate any \(b\in L^{2d/(d+2)}\) in the \(L^{2d/(d+2)}\) norm by a \(C^\infty \) function and also approximate f in \(H^{-1}\) by a smooth function, which gives a unique and smooth solution the approximate system. The limiting procedure described below (6) then gives an approximation solution u with (35). Since for \(b\in L^2\) the uniqueness of solutions to (3) holds (recall (8)), we obtain (5).

We first recall the inequality

$$\begin{aligned} \Vert g \Vert _2^2 \le \varepsilon \Vert \nabla g \Vert ^2_2 + C_n \varepsilon ^{-\frac{n}{2}} \Vert g \Vert _1^2, \end{aligned}$$
(36)

valid for every \(g\in H^1 (\mathbb {T}^d)\), \(\varepsilon \in (0,1)\). Indeed the Gagliardo-Nirenberg-Sobolev inequality gives that

$$\begin{aligned} \Vert g \Vert ^2_2 \le C \Vert \nabla g \Vert _2^{\frac{2d}{d+2}} \Vert g \Vert _1^{\frac{4}{d+2}} \le \varepsilon \Vert \nabla g \Vert _2^2 + C_d \varepsilon ^{-\frac{d}{2}} \Vert g \Vert _1^2 \end{aligned}$$

if \(\int g =0\), where we used Young’s inequality in the second step. Thus the claim follows for such g. If \(\int g \ne 0\) then

$$\begin{aligned} \begin{aligned} \Vert g \Vert _2^2&\le C \left\| g- \int g \right\| _2^2 + C\left| \int g \right| ^2 \\&\le \varepsilon \Vert \nabla g \Vert _2^2 + C_n \varepsilon ^{-\frac{n}{2}} \left\| g - \int g\right\| _1^2 + C\Vert g \Vert _1^2 \\&\le \varepsilon \Vert \nabla g \Vert _2^2 + C_n \varepsilon ^{-\frac{n}{2}} \left\| g \right\| _1^2 , \end{aligned} \end{aligned}$$

where we used the triangle inequality and the assumption that \(\varepsilon <1\) in the last step.

We can now prove (35). Applying (36) with \(g:={u^{2^{k-1}}}\) gives

$$\begin{aligned} \int u^{2^k} \le \varepsilon \int \left| \nabla u^{2^{k-1}} \right| ^2 + C\varepsilon ^{-\frac{n}{2}} \left( \int u^{2^{k-1}}\right) ^2, \end{aligned}$$
(37)

where \(C>1\) is a generic constant, which depends on d only. The value of C may change from line to line in the following calculation.

Note that, since we assume \(b\in L^2 \), we can test (3) with \(u^{2^k-1}\). Indeed, one can, for example, take \(\phi :=(u^{2^k-1})_\varepsilon \) (the mollification of u, recall (12)) and take the limit \(\varepsilon \rightarrow 0\). We obtain

$$\begin{aligned} \frac{2^k -1}{2^{2k-2}} \int \left| \nabla u^{2^{k-1}} \right| ^2 = \int \nabla u \cdot \nabla \left( u^{2^k-1} \right) = \int f u^{2^k-1} \le \frac{1}{2} \int f^{2^k} + \frac{1}{2} \int u^{2^k}, \end{aligned}$$
(38)

where we used the fact that \(\int bu \cdot \nabla \left( u^{2^k-1} \right) =(1-2^{-k}) \int b \cdot \nabla \left( u^{2^k} \right) =0\), due to the divergence-free assumption on b and the assumed regularity \(u\in L^\infty \cap H^1\), \(b\in L^2\). Applying this inequality in (37) gives

$$\begin{aligned} \int u^{2^k} \le \varepsilon \frac{2^{2k-3}}{2^k-1} \int f^{2^k} + \varepsilon \frac{2^{2k-3}}{2^k-1} \int u^{2^k} + C \varepsilon ^{-\frac{n}{2}} \left( \int u^{2^{k-1}} \right) ^2. \end{aligned}$$

Taking \(\varepsilon :=2^{-k}\) and noting that

$$\begin{aligned} 2^{-k} \frac{2^{2k-3}}{2^k-1} \le \frac{1}{4} \qquad \text { for } k\ge 1, \end{aligned}$$

we obtain

$$\begin{aligned} \int u^{2^k} \le \frac{1}{4} \int f^{2^k} + \frac{1}{4} \int u^{2^k} + C 2^{\frac{kn}{2}} \left( \int u^{2^{k-1}} \right) ^2 , \end{aligned}$$

and so

$$\begin{aligned} \int u^{2^k} \le \int f^{2^k} + C 2^{\frac{kn}{2}} \left( \int u^{2^{k-1}} \right) ^2 \le \Vert f\Vert _{\infty }^{2^k} + C 2^{\frac{kn}{2}} \Vert u \Vert _{2^{k-1}}^{2^k} \end{aligned}$$

for \(k\ge 1\). Taking both sides to power \(2^{-k}\) gives

$$\begin{aligned} \Vert u \Vert _{2^k} \le \left( \Vert f \Vert _{\infty }^{2^k} + C 2^{\frac{kn}{2}} \Vert u \Vert _{2^{k-1}}^{2^k} \right) ^{2^{-k}} \end{aligned}$$

for \(k\ge 1\). Noting that the above inequality holds trivially when the left-hand side is replaced by \(\Vert f \Vert _\infty \), we set

$$\begin{aligned} m_k :=\max \left\{ \Vert f \Vert _\infty , \Vert u\Vert _{2^k} \right\} \end{aligned}$$

and obtain that

$$\begin{aligned} m_k \le \left( 1+C 2^{\frac{kn}{2}} \right) ^{2^{-k}} m_{k-1} \le \left( C 2^{\frac{kn}{2}} \right) ^{2^{-k}} m_{k-1} \end{aligned}$$

for \(k\ge 1\). (Recall that the value of \(C>1\) may change from line to line.) Since

$$\begin{aligned}&\prod _{k=1}^\infty \left( C 2^{\frac{kn}{2}} \right) ^{2^{-k}} = \exp \left( \log \left( \prod _{k=1}^\infty \left( C 2^{\frac{kn}{2}} \right) ^{2^{-k}} \right) \right) \\&\quad = \exp \left( \log C\sum _{k=1}^\infty 2^{-k} + \log \left( 2^{\frac{n}{2}} \right) \sum _{k=1}^\infty k2^{-k} \right) \le C, \end{aligned}$$

we see that

$$\begin{aligned} m_k \le C m_0\qquad \text { for } k\ge 1. \end{aligned}$$

In particular \(\Vert u \Vert _{2^k } \le C m_0\) for \(k\ge 1\), which implies that \(u \in L^\infty \) with

$$\begin{aligned} \Vert u \Vert _\infty \le C m_0. \end{aligned}$$
(39)

On the other hand the Poincaré inequality and (38) applied with \(k=1\) gives

$$\begin{aligned} \Vert u \Vert _2^2 \le C \Vert \nabla u \Vert _2^2 =C \int fu \le \frac{1}{2} \Vert u \Vert _2^2 + C \Vert f \Vert _\infty ^2, \end{aligned}$$

which, after absorbing the first term on the right-hand side, implies that \(m_0 \le C \Vert f \Vert _\infty \). Applying this in (39) gives (35), as required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cieślak, T., Ożański, W.S. A partial uniqueness result and an asymptotically sharp nonuniqueness result for the Zhikov problem on the torus. Calc. Var. 61, 97 (2022). https://doi.org/10.1007/s00526-022-02206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-022-02206-7

Mathematics Subject Classification

Navigation