Skip to main content
Log in

On uniqueness and existence of conformally compact Einstein metrics with homogeneous conformal infinity

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we show that for a generalized Berger metric \({\hat{g}}\) on \({\mathbb {S}}^3\) close to the round metric, the conformally compact Einstein (CCE) manifold (Mg) with \(({\mathbb {S}}^3, [{\hat{g}}])\) as its conformal infinity is unique up to isometries. For the high-dimensional case, we show that if \({\hat{g}}\) is an \(\text {SU}(k+1)\)-invariant metric on \({\mathbb {S}}^{2k+1}\) for \(k\ge 1\), the non-positively curved CCE metric on the \((2k+1)\)-ball \(B_1(0)\) with \(({\mathbb {S}}^{2k+1}, [{\hat{g}}])\) as its conformal infinity is unique up to isometries. In particular, since in Li (Trans Amer Math Soc 369(6): 4385–4413, 2017), we proved that if the Yamabe constant of the conformal infinity \(Y({\mathbb {S}}^{2k+1}, [{\hat{g}}])\) is close to that of the round sphere then any CCE manifold filled in must be negatively curved and simply connected, therefore if \({\hat{g}}\) is an \(\text {SU}(k+1)\)-invariant metric on \({\mathbb {S}}^{2k+1}\) which is close to the round metric, the CCE metric filled in is unique up to isometries. Using the continuity method, we prove an existence result of the non-positively curved CCE metric with prescribed conformal infinity \(({\mathbb {S}}^{2k+1}, [{\hat{g}}])\) when the metric \({\hat{g}}\) is \(\text {SU}(k+1)\)-invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M.: Boundary regularity, uniqueness and non-uniqueness for AH Einstein metrics on \(4\)-manifolds. Adv. Math. 179, 205–249 (2003)

    Article  MathSciNet  Google Scholar 

  2. Anderson, M.: Einstein metrics with prescribed conformal infinity on \(4\)-manifolds. Geom. Funct. Anal. 18, 305–366 (2008)

    Article  MathSciNet  Google Scholar 

  3. Anderson, M., Chru\(\acute{\text{s}}\)ciel, P. T., Delay, E.: Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant II (\(n > 4\)), AdS-CFT correspondence : Einstein metrics and their conformal boundaries, IRMA Lectures in Mathematics and Theoretical Physics, 8, 2005, 165–205

  4. Andersson, L., Dahl, M.: Scalar curvature rigidity for asymptotically hyperbolic manifolds. Ann. Global Anal. Geo. 16, 1–27 (1998)

    Article  MathSciNet  Google Scholar 

  5. Besse, A.: Einstein Manifolds. Springer, Berlin (1987)

    Book  Google Scholar 

  6. Bettiol, R., Paolo, P.: Bifurcation and local rigidity of homogeneous solutions to the Yamabe problem on spheres. Calc. Var. Part. Differ. Equ. 47(3–4), 789–807 (2013)

    Article  MathSciNet  Google Scholar 

  7. Biquard, O.: M\(\acute{\text{ e }}\)triques d’Einstein asymptotiquement sym\(\acute{\text{ e }}\)triques, Ast\(\acute{\text{ e }}\)risque No. 265 (2000)

  8. Biquard, O.: Continuation unique \(\grave{a}\) partir de l’infini conforme pour les m\(\acute{e}\)triques d’Einstein. Math. Res. Lett. 15(6), 1091–1099 (2008)

    Article  MathSciNet  Google Scholar 

  9. Borel, A.: Some remarks about Lie groups transitive on spheres and tori. Bull. A.M.S. 55, 580–587 (1949)

    Article  MathSciNet  Google Scholar 

  10. Borel, A.: Le plan projectif des octaves et les sph\(\grave{\text{ e }}\)res comme espaces homog\(\grave{\text{ e }}\)nes. C.R.Acad. Sc. Paris 230, 1378–1380 (1950)

  11. Buttsworth, T.: The Dirichlet problem for Einstein metrics on cohomogeneity one manifolds. Ann. Global Anal. Geom. 54(1), 155–171 (2018)

    Article  MathSciNet  Google Scholar 

  12. Cai, M., Galloway, G.: Boundaries of zero scalar curvature in the AdS/CFT Correspondence. Adv. Theor. Math. Phys. 69, 1769–1783 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Chang, S.Y.A., Ge, Y., Qing, J.: Compactness of conformally compact Einstein 4-manifolds II. Adv. Math. 373, 107325 (2020)

    Article  MathSciNet  Google Scholar 

  14. Chen, X., Lai, M., Wang, F.: Escobar-Yamabe compactifications for Poincar\(\acute{\text{ e }}\)-Einstein manifolds and rigidity theorems. Adv. Math. 343, 16–35 (2019)

    Article  MathSciNet  Google Scholar 

  15. Chruściel, P.T., Delay, E., Lee, J.M., Skinner, D.N,: Boundary regularity of conformally compact Einstein metrics. J. Differ. Geom. 69(1), 111–136 (2005)

  16. Cortés, V., Saha, A,: Quarter-pinched einstein metrics interpolating between real and complex hyperbolic metrics. Math. Z. 290(1–2), 155–166 (2018)

  17. Deng, S.: Homogeneous Finsler Spaces, Springer Monographs in Mathematics., p. xiv+240. Springer, New York (2012)

    Book  Google Scholar 

  18. Dutta, S., Javaheri, M.: Rigidity of conformally compact manifolds with the round sphere as conformal infinity. Adv. Math. 224, 525–538 (2010)

    Article  MathSciNet  Google Scholar 

  19. Eberlein, P.: Geodesic flows in manifolds of nonpositive curvature. Proc. Symp. Pure Math. 69, 525–571 (2001)

    Article  MathSciNet  Google Scholar 

  20. Fefferman, C., Graham, C.R.: Conformal invariants, in Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque (1985), 95-116

  21. Graham, R.: Volume and area renormalizations for conformally compact Einstein metrics. Rend. Circ. Mat. Palermo. Ser. II(Suppl. 63), 31–42 (2000). arXiv:math/9909042v1

  22. Graham, R., Lee, J.: Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2), 186–225 (1991)

    Article  MathSciNet  Google Scholar 

  23. Grove, K., Ziller, W.: Comomogeneity one manifolds with positive Ricci curvature. Invent. Math. 149(3), 619–646 (2002)

    Article  MathSciNet  Google Scholar 

  24. Gursky, M., Han, Q.: Non-existence of Poincar\(\acute{\text{ e }}\)-Einstein manifolds with prescribed conformal infinity. Geom. Funct. Anal. 27(4), 863–879 (2017)

    Article  MathSciNet  Google Scholar 

  25. Gursky, M., Han, Q., Stolz, S.: An invariant related to the existence of conformally compact Einstein fillings, arXiv: 1801.04474v1

  26. Gursky, M., Sz\(\acute{\text{ e }}\)kelyhidi, G,: A local existence result for Poincaré-Einstein metrics. Adv. Math. 361, 106912 (2020)

  27. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in Anti-de Sitter space. Comm. Math. Phys. 87(2), 577–588 (1983)

    Article  MathSciNet  Google Scholar 

  28. Hitchin, N.J.: Twistor spaces, Einstein metrics and isomonodromic deformations. J. Differ. Geom. 42(1), 30–112 (1995)

    Article  MathSciNet  Google Scholar 

  29. Kerin, M., Wraith, D.: Homogeneous metrics on spheres. Irish Math. Soc. Bull. 51, 59–71 (2003)

    Article  MathSciNet  Google Scholar 

  30. Kichenassamy, S.: On a conjecture of Fefferman and Graham. Adv. Math. 184(2), 268–288 (2004)

    Article  MathSciNet  Google Scholar 

  31. LeBrun, C.: \({\cal{H}}\)-space with a cosmological constant. Proc. Roy. Soc. London Ser. A 380, 171–185 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Lee, J.M.: Fredholm operators and Einstein metrics on conformally compact manifolds. Mem. Amer. Math. Soc. 183(864), vi+83 (2006)

    MathSciNet  MATH  Google Scholar 

  33. Li, G.: On Uniqueness of conformally compact Einstein metrics with homogeneous conformal infinity. Adv. Math. 340, 983–1011 (2018)

    Article  MathSciNet  Google Scholar 

  34. Li, G.: On Uniqueness And Existence of Conformally Compact Einstein Metrics with Homogeneous Conformal Infinity. II, preprint, arXiv:1801.07969

  35. Li, G., Qing, J., Shi, Y.: Gap phenomena and curvature estimates for conformally compact Einstein manifolds. Trans. Amer. Math. Soc. 369(6), 4385–4413 (2017)

    Article  MathSciNet  Google Scholar 

  36. Matsumoto, Y.: A construction of Poincar\(\acute{\text{ e }}\)-Einstein metrics of cohomogeneity one on the ball. Proc. Amer. Math. Soc. 147(9), 3983–3993 (2019)

    Article  MathSciNet  Google Scholar 

  37. Mazzeo, R.: Elliptic theory of differential edge operators I. Comm. Partial Differ. Equ. 16(10), 1615–1664 (1991)

    Article  MathSciNet  Google Scholar 

  38. Montgomery, D., Samelson, H.: Transformation groups on spheres. Ann. od Math. 44, 454–470 (1943)

    Article  MathSciNet  Google Scholar 

  39. Obata, M.: The conjectures on conformal transformations of Riemannian manifolds. J. Differ. Geom. 6, 247–258 (1971)

    Article  MathSciNet  Google Scholar 

  40. Pedersen, H.: Einstein metrics, Spinning top motions and monopoles. Math. Ann. 274, 35–59 (1986)

    Article  MathSciNet  Google Scholar 

  41. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics 171. Springer, New York (1998)

    Google Scholar 

  42. Qing, J.: On the rigidity for conformally compact Einstein manifolds. Int. Math. Res. Not. 2003(21), 1141–1153

  43. Sbaih, M.A.A., Srour, M.K.H., Hamada, M.S., Fayad, H.M.: Lie algebra and representation of \(\text{ SU }(4)\). Electron. J. Theor. Phys. 10, 28 (2013)

    Google Scholar 

  44. Shi, Y., Tian, G.: Rigidity of asymptotically hyperbolic manifolds. Commun. Math. Phys 259, 545–559 (2005)

    Article  MathSciNet  Google Scholar 

  45. Wang, X.: On conformally compact Einstein manifolds. Math. Res. Lett. 8, 671–688 (2001)

    Article  MathSciNet  Google Scholar 

  46. Witten, E., Yau, S.T.: Connectedness of the boundary in the ADS/CFT Correspondence. Adv. Theor. Math. Phys. 3(6), 1635–1655 (1999)

    Article  MathSciNet  Google Scholar 

  47. Yano, K.: The theory of Lie derivatives and its applications. North-Holland, Amsterdam (1957)

    MATH  Google Scholar 

  48. Ziller, W.: Homogeneous Einstein metrics on spheres and projective spaces. Math. Ann. 259, 351–358 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professor Jie Qing and Professor Yuguang Shi for helpful discussion and constant support. The author is grateful to Professor Fuquan Fang and Xiaoyang Chen for helpful discussion on homogeneous spaces. He is grateful to Professor Matthew Gursky, Professor S.-Y. A. Chang and Professor Robin Graham for their interests and encouragement. Thanks also due to Wei Yuan for pointing him the treatise [7].

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. A. Chang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Li.: Research partially supported by the National Natural Science Foundation of China No. 11701326, the Fundamental Research Funds of Shandong University 2016HW008 and the Young Scholars Program of Shandong University 2018WLJH85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G. On uniqueness and existence of conformally compact Einstein metrics with homogeneous conformal infinity. Calc. Var. 61, 60 (2022). https://doi.org/10.1007/s00526-021-02180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02180-6

Mathematics Subject Classification

Navigation