Skip to main content
Log in

Non-minimizing connecting orbits for multi-well systems

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Given a nonnegative, smooth potential \(V: {{\mathbb {R}}}^k \rightarrow {{\mathbb {R}}}\) (\(k \ge 2\)) with multiple zeros, we say that a curve \({\mathfrak {q}}: {{\mathbb {R}}}\rightarrow {{\mathbb {R}}}^k\) is a connecting orbit if it solves the autonomous system of ordinary differential equations

$$\begin{aligned} {\mathfrak {q}}''= \nabla _{\mathbf{u}} V({\mathfrak {q}}) , \quad \text{ in }\;\, {{\mathbb {R}}}\end{aligned}$$

and tends to a zero of V at \(\pm \infty \). Broadly, our goal is to study the existence of connecting orbits for the problem above using variational methods. Despite the rich previous literature concerning the existence of connecting orbits for other types of second order systems, to our knowledge only connecting orbits which minimize the associated energy functional in a suitable function space were proven to exist for autonomous multi-well potentials. The contribution of this paper is to provide, for a class of such potentials, some existence results regarding non-minimizing connecting orbits. Our results are closely related to the ones in the same spirit obtained by J. Bisgard in his PhD thesis (University of Wisconsin-Madison, 2005), where non-autonomous periodic multi-well potentials (ultimately excluding autonomous potentials) are considered. Our approach is based on several refined versions of the classical Mountain Pass Lemma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We owe this idea to the referee. In previous versions of this paper, we relied instead on a lengthier and less direct argument based on a localized version of the mountain pass lemma due to Ghoussoub and Preis [21, 22].

  2. We say that J satisfies the Palais–Smale condition at the level \(c \ge {\mathfrak {m}}\) if every sequence satisfying (2.7) possesses a convergent subsequence in \({\mathscr {H}}\).

  3. Proposition 2.1 is only invoked once, in the proof of Lemma 3.1 and Corollary 2.1 is brought into account in Remark 1.1.

References

  1. Alama, S., Bronsard, L., Gui, C.: Stationary layered solutions in \(\mathbb{R}^2\) for an Allen–Cahn system with multiple well potential. Calc. Var. Partial Differ. Equ. 5(4), 359–390 (1997)

    Article  Google Scholar 

  2. Alama, S., Bronsard, L., Contreras, A., Pelinovsky, D.E.: Domain walls in the coupled Gross–Pitaevskii equations. Arch. Ration. Mech. Anal. (2015)

  3. Alessio, F.: Stationary layered solutions for a system of Allen–Cahn type equations. Indiana Univ. Math. J. 62(5), 1535–1564 (2013). (30 pages)

    Article  MathSciNet  Google Scholar 

  4. Alessio, F., Montecchiari, P.: Gradient Lagrangian systems and semilinear PDE. Math. Eng. 3(6), Paper No. 044, 28 pp (2021)

  5. Alikakos, N.D., Betelú, S.I., Chen, X.: Explicit stationary solutions in multiple well dynamics and non-uniqueness of interfacial energy densities. Eur. J. Appl. Math. 17(5), 525–556 (2006)

    Article  MathSciNet  Google Scholar 

  6. Alikakos, N.D., Fusco, G.: On the connection problem for potentials with several global minima. Indiana Univ. Math. J. 57(4), 1871–1906 (2008)

    Article  MathSciNet  Google Scholar 

  7. Ambrosetti, A., Coti Zelati, V.: Multiple homoclinic orbits for a class of conservative systems. Rend. Sem. Mat. Univ. Padova 89, 177–194 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  Google Scholar 

  9. Berestycki, H., Lions, P.-L.: Nonlinear scalar field equations. II. Existence of infinitely many solutions. Arch. Ration. Mech. Anal. 82(4), 347–375 (1983)

    Article  MathSciNet  Google Scholar 

  10. Bertotti, M.L., Montecchiari, P.: Connecting orbits for some classes of almost periodic Lagrangian systems. JDE 145, 453468 (1998)

    Article  MathSciNet  Google Scholar 

  11. Bisgard, J.: Homoclinic and heteroclinic connections for two classes of Hamiltonian systems. Doctoral thesis. University of Wisconsin-Madison (2005)

  12. Bolotin, S.: Libration motions of natural dynamical systems, (Russian. English summary). Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6, 72–77 (1978)

  13. Bolotin, S., Kozlov, V.V.: Libration in systems with many degrees of freedom. J. Appl. Math. Mech. 42 (1978)

  14. Bolotin, S., Rabinowitz, P.H.: A note on heteroclinic solutions of mountain pass type for a class of nonlinear elliptic PDE’s. In: Progress in Nonlinear Differential Equations and their Applications, vol. 66, pp. 105–114. Birkhauser, Basel (2006)

  15. Bolotin, S., Rabinowitz, P.H.: On the multiplicity of periodic solutions of mountain pass type for a class of semilinear PDE’s. J. Fixed Point Theory Appl. 2(2), 313–331 (2007)

    Article  MathSciNet  Google Scholar 

  16. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  17. Bronsard, L., Gui, C., Schatzman, M.: A three-layered minimizer in \(\mathbb{R}^2\) for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math. 49(7), 677–715 (1996)

    Article  Google Scholar 

  18. Caldiroli, P., Montecchiari, P.: Homoclinic orbits for second order Hamiltonian systems with potential changing sign. Commun. Appl. Nonlinear Anal. 1(2), 97–129 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Coti Zelati, V., Rabinowitz, P.H.: Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Am. Math. Soc. 4(4), 693–727 (1991)

    Article  MathSciNet  Google Scholar 

  20. de la Llave, R., Valdinoci, E.: Critical points inside the gaps of ground state laminations for some models in statistical mechanics. J. Stat. Phys. 129(1), 81–119 (2007)

    Article  MathSciNet  Google Scholar 

  21. Ghoussoub, N.: Location, multiplicity and Morse indices of min–max critical points. J. Reine Angew. Math. 417, 27–76 (1991)

    MathSciNet  MATH  Google Scholar 

  22. Ghoussoub, N., Preiss, D.: A general mountain pass principle for locating and classifying critical points. Annales de l’IHP, section C, tome 6(5), 321–330 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact case, part I. Annales de l’IHP, section C, tome 1(2), 109–145 (1984)

    MATH  Google Scholar 

  24. Marcus, M., Mizel, V.J.: Every superposition operator mapping one Sobolev space into another is continuous. J. Funct. Anal. 33(2), 217–229 (1979)

    Article  MathSciNet  Google Scholar 

  25. Mawhin, J., Willem, M.: Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, vol. 74. Springer, New York, xiv+277 pp (1989)

  26. Montecchiari, P., Rabinowitz, P.H.: Solutions of mountain pass type for double well potential systems. Calc. Var. Partial Differ. Equ. 57(5), Paper No. 114, 31 pp (2018)

  27. Montecchiari, P., Rabinowitz, P.H.: A variant of the mountain pass theorem and variational gluing. Milan J. Math. 88(2), 347–372 (2020)

    Article  MathSciNet  Google Scholar 

  28. Monteil, A., Santambrogio, F.: Metric methods for heteroclinic connections in infinite-dimensional spaces. Indiana Univ. Math. J. 69(4), 1445–1503 (2020)

    Article  MathSciNet  Google Scholar 

  29. Rabinowitz, P.H.: Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. H. Poincaré Anal. Non Lineaire 6, 331–346 (1989)

    Article  MathSciNet  Google Scholar 

  30. Rabinowitz, P.H.: Homoclinic orbits for a class of Hamiltonian systems. Proc. R. Soc. Edinb. 114A, 33–38 (1990)

    Article  MathSciNet  Google Scholar 

  31. Rabinowitz, P.H.: Some recent results on heteroclinic and other connecting orbits of Hamiltonian systems. In: Girardi, M., Matzeu, M., Pacella, F. (Eds.) Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations. Pitman Res. Notes in Math., vol. 243, pp. 157–168 (1992)

  32. Rabinowitz, P.H.: Homoclinic and heteroclinic orbits for a class of Hamiltonian systems. CVPDE 1, 1–36 (1993)

    MathSciNet  MATH  Google Scholar 

  33. Schatzman, M.: Asymmetric heteroclinic double layers. ESAIM Control Optim. Calc. Var. 8, 965–1005 (2002)

    Article  MathSciNet  Google Scholar 

  34. Van Schaftingen, J.: Symmetrization and minimax principles. Commun. Contemp. Math. 7(4), 463–481 (2005)

    Article  MathSciNet  Google Scholar 

  35. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and their Applications, vol. 24. Birkhäuser Boston, Inc., Boston, x+162 pp (1996)

  36. Zuniga, A., Sternberg, P.: On the heteroclinic connection problem for multi-well gradient systems. J. Differ. Eqn. 261(7), 3987–4007 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I wish to thank my PhD advisor Fabrice Bethuel for bringing this problem into my attention and for many useful comments and remarks during the elaboration of this paper. I also wish to thank the referee for pointing to several important references such as [11] as well as for numerous remarks and suggestions which lead to significant improvements on the paper. This program has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 754362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Oliver-Bonafoux.

Additional information

Communicated by P. H. Rabinowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliver-Bonafoux, R. Non-minimizing connecting orbits for multi-well systems. Calc. Var. 61, 69 (2022). https://doi.org/10.1007/s00526-021-02167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02167-3

Mathematics Subject Classification

Navigation