Skip to main content
Log in

Inverse mean curvature evolution of entire graphs

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the evolution of strictly mean-convex entire graphs over \({{\mathbb {R}}}^n\) by Inverse Mean Curvature flow. First we establish the global existence of starshaped entire graphs with superlinear growth at infinity. The main result in this work concerns the critical case of asymptotically conical entire convex graphs. In this case we show that there exists a time \( T < +\infty \), which depends on the growth at infinity of the initial data, such that the unique solution of the flow exists for all \(t < T\). Moreover, as \(t \rightarrow T\) the solution converges to a flat plane. Our techniques exploit the ultra-fast diffusion character of the fully-nonlinear flow, a property that implies that the asymptotic behavior at spatial infinity of our solution plays a crucial influence on the maximal time of existence, as such behavior propagates infinitely fast towards the interior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandroni, R., Sinestrari, C.: Evolution of convex entire graphs by curvature flows. Geom. Flows 1, 111–125 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Carron, G.: Inégalités de Hardy sur les variétés riemanniennes non-compactes. J. Math. Pures Appl. 76, 883–891 (1997)

    Article  MathSciNet  Google Scholar 

  3. Choi, K., Daskalopoulos, P.: The \( Q^k\) flow on complete non compact graphs, arXiv: 1603.03453

  4. Choi, K., Daskalopoulos, P., Kim, L., Lee, L.: The evolution of complete non-compact graphs by powers of Gauss curvature, arXiv: 1603.04286

  5. Dahlberg, B.E.J., Kenig, C.E.: Nonnegative solutions to the porous medium equation. Commun. Part. Differ. Equ. 9, 409–437 (1984)

    Article  MathSciNet  Google Scholar 

  6. Daskalopoulos, P., Huisken, G., King, J.R.: Self-similar entire convex solutions to the inverse mean curvature flow, private communication

  7. Daskalopoulos, P., Kenig, C.: Degenerate Diffusions: Initial Value Problems and Local Regularity Theory, EMS Tracts in Mathematics, 1. European Mathematical Society (EMS), Zürich (2007)

    Book  Google Scholar 

  8. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130, 453–471 (1989)

    Article  MathSciNet  Google Scholar 

  9. Ecker, K., Huisken, G.: Interior estimates for hypersurfaces moving by mean curvature. Invent. Math. 105, 547–569 (1991)

    Article  MathSciNet  Google Scholar 

  10. Franzen, M.: Existence of convex entire graphs evolving by powers of the mean curvature, preprint (2011) arXiv:1112.4359

  11. Halldorsson, H.P.: Self-similar solutions to the curve shortening flow. Trans. Am. Math. Soc. 364(10), 5285–5309 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gerhardt, C.: Flow of nonconvex hypersurfaces into spheres. J. Differ. Geom. 32, 299–314 (1990)

    Article  MathSciNet  Google Scholar 

  13. Heidusch, M.E.: Zur Regularität des inversen mittleren Krümmungsflusses, Dissertation Tübingen Univ. (2001)

  14. Holland, J.: Interior estimates for hypersurfaces evolving by their k-th Weingarten curvature and some applications. Indiana Univ. Math. J. 63, 1281–1310 (2014)

    Article  MathSciNet  Google Scholar 

  15. Huisken, G., Ilmanen, T.: The Riemannian Penrose inequality. Int. Math. Res. Not. 20, 1045–1058 (1997)

    Article  MathSciNet  Google Scholar 

  16. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–438 (2001)

    Article  MathSciNet  Google Scholar 

  17. Huisken, G., Ilmanen, T.: Higher regularity of the inverse mean curvature flow. J. Differ. Geom. 80, 433–451 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Kombe, I., Özaydin, M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Am. Math. Soc. 361, 6191–6203 (2009)

    Article  MathSciNet  Google Scholar 

  19. Krylov, N.V.: Nonlinear Elliptic and Parabolic Equations of the Second Order. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  20. Smoczyk, K.: Remarks on the inverse mean curvature flow. Asian J. Math. 4, 331–335 (2000)

    Article  MathSciNet  Google Scholar 

  21. Tian, G., Wang, X.-J.: A priori estimates for fully nonlinear parabolic equations. Int. Math. Res. Not 2013, 3857–3877 (2013)

    Article  MathSciNet  Google Scholar 

  22. Urbas, J.: On the expansion of strashaped hypersurfaces by symmetric functions of their principal curvatures. Math. Z. 205, 355–372 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

P. Daskalopoulos has been partially supported by NSF Grant DMS-1600658. She also wishes to thank University of Tübingen and Oberwolfach Research Institute for Mathematics for their hospitality during the preparation of this work. G. Huisken wishes to thank Columbia University and the Institute for Theoretical Studies ITS at ETH Zürich for their hospitality during the preparation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota Daskalopoulos.

Additional information

Communicated by L. Ambrosio.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daskalopoulos, P., Huisken, G. Inverse mean curvature evolution of entire graphs. Calc. Var. 61, 53 (2022). https://doi.org/10.1007/s00526-021-02160-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-021-02160-w

Mathematics Subject Classification

Navigation